
Liquid Haskell as a GHC Plugin
HIW 2020

Alfredo Di Napoli, Well-Typed LLP
Ranjit Jhala, University of California at San Diego
Andres Löh, Well-Typed LLP
Niki Vazou, IMDEA Software Institute
2020-08-28



Liquid Haskell in brief

▶ Liquid Haskell1 is a Refinement Type Checker for Haskell.
▶ Refinement Types are types with a logical predicate attached to

them.

1http://ucsd-progsys.github.io/liquidhaskell

http://ucsd-progsys.github.io/liquidhaskell


Example

{-@ safeDiv :: Int -> {y : Int | y /= 0} -> Int @-}
safeDiv :: Int -> Int -> Int
safeDiv = div

If we try to call safeDiv 3 0 , Liquid Haskell rejects the program as
UNSAFE.



The old status quo

Previously, integrating Liquid Haskell into an existing codebase was not
a zero-setup operation, which hindered larger-scale adoption.

▶ Available as an executable

▶ “Hardcoded” prelude
▶ No ghcid or ghcide support



The old status quo

Previously, integrating Liquid Haskell into an existing codebase was not
a zero-setup operation, which hindered larger-scale adoption.

▶ Available as an executable
▶ “Hardcoded” prelude

▶ No ghcid or ghcide support



The old status quo

Previously, integrating Liquid Haskell into an existing codebase was not
a zero-setup operation, which hindered larger-scale adoption.

▶ Available as an executable
▶ “Hardcoded” prelude
▶ No ghcid or ghcide support



The new way

Starting from version 0.8.10.1, Liquid Haskell is available as a
GHC Plugin.

Goals:

▶ Piggyback on GHC

▶ Allow users to ship their own specifications as well as re-use
existing ones

▶ Support IDE tools
▶ Make Liquid Haskell easier for people to try and use



The new way

Starting from version 0.8.10.1, Liquid Haskell is available as a
GHC Plugin.

Goals:

▶ Piggyback on GHC
▶ Allow users to ship their own specifications as well as re-use

existing ones

▶ Support IDE tools
▶ Make Liquid Haskell easier for people to try and use



The new way

Starting from version 0.8.10.1, Liquid Haskell is available as a
GHC Plugin.

Goals:

▶ Piggyback on GHC
▶ Allow users to ship their own specifications as well as re-use

existing ones
▶ Support IDE tools

▶ Make Liquid Haskell easier for people to try and use



The new way

Starting from version 0.8.10.1, Liquid Haskell is available as a
GHC Plugin.

Goals:

▶ Piggyback on GHC
▶ Allow users to ship their own specifications as well as re-use

existing ones
▶ Support IDE tools
▶ Make Liquid Haskell easier for people to try and use



Demo



The Liquid Haskell architecture in brief

Bird’s eye view over Liquid Haskell’s architecture:



Brief GHC Plugin architecture recap



Attempt 1: Proper pipeline split



Attempt 1

Idea: Follow the natural lifecycle of the GHC pipeline.

While probably more elegant, this didn’t work for most programs.

Challenge 1

Liquid Haskell requires access to the unoptimised [CoreBind] , and
we cannot assume anything about the program’s -O level.



Attempt 2: Duplicate (some) work



New idea

Use the input DynFlags to generate another version with
optimisations switched off.

Use the latter to parse, typecheck and desugar the module again (!), to
extract a suitable [CoreBind] .

This worked, until we tried to use the plugin with ghcide.

Challenge 2

When checking an input module, ghcide calls only the
typeCheckResultAction hook of any registered GHC plugin.



Attempt 3: Reduce the plugin surface



Attempt 3

The final design of the plugin does everything in the
typeCheckResultAction , so that we can integrate the plugin
with ghcide.

The double parsing, typechecking, desugaring is still necessary.



More on ghcide

Even with “Attempt 3” implemented, we couldn’t get ghcide to work
properly. The issue was twofold:

▶ GHC issue #18070 2 prevented plugins to be properly used on
8.10.1. This is now fixed and is part of the 8.10.2 release;

▶ We had to patch ghcide3 to fully support GHC plugins.

Once we fixed the above, we got ghcide working!

2https://gitlab.haskell.org/ghc/ghc/-/issues/18070
3https://github.com/digital-asset/ghcide/pull/698

https://gitlab.haskell.org/ghc/ghc/-/issues/18070
https://github.com/digital-asset/ghcide/pull/698


Success, at last



Ecosystem

We offer drop-in replacements for some popular Haskell libraries:

▶ liquid-base
▶ liquid-containers
▶ liquid-bytestring
▶ . . .

We also propose a simple PVP scheme to track the dependency on the
upstream package, for users willing to contribute to the ecosystem by
adding new packages:

liquid-<package-name>-A.B.C.D.X.Y

▶ A.B.C.D track the upstream package,
▶ X.Y allow for LH-related bug fixes and breaking changes.



Have we achieved our goals?

▶ Harness GHC for recompilation avoidance and dependency
resolution 4

▶ Allow users to ship their own specifications 4

▶ Support IDE tools 4

We hope the plugin will help with Liquid Haskell’s adoption.



Conclusions and lessons learned

The low-level nature of the GHC API makes tricky to write plugins which
modify the compilation pipeline but need to be compatible with tools
that extend the frontend (like ghcide).

▶ Each plugin action is fairly stateless, no first-class support to pass
user’s state around.

▶ Not having access to the “unoptimised” [CoreBind]
complicated the design.

▶ Calling the GHC API inside some actions might lead to surprising
results (like ghci looping).

▶ The fact that our plugin worked with ghcid and ghcide with minor
adjustments was very satisfactory.

Start refining your types today, use -fplugin=LiquidHaskell in
your next project!


