
Runtime partitions for scaling GHC programs

Ben Gamari

28 Aug 2020



The Problem



The Problem

GC synchronization leads to poorly scaling across many cores.

Server applications have competing pressures:

I Low-latency wants small nurseries −→ lots of sychronization

I Multi-core scaling demands large nurseries (minimize
synchronization)



A Solution: Local heaps

Marlow 2011 1:

I Give each core its own independent nursery

I Prohibit references between local nurseries, allowing nursery
GCs to happen without synchronizations

I “Globalise” data which is needed by other cores

I Implicit globalisation: non-obvious heuristics, hard to reason
about performance

1S. Marlow & S. Peyton-Jones. “Multicore garbage collection with local
heaps.” Proceedings of the 10th International Symposium on Memory
Management (2011)



A Solution: Multiple processes

forkMap
:: (NFData a, NFData b) -- ^ needed to build compact region
=> Int -- ^ number of workers to spawn
-> StaticPtr (a -> b) -- ^ StaticPtr since we must send function

-- across the wire.
-> Producer a IO r
-> Producer b IO r

I Communicate via pipes
I StaticPtrs allow sharing of code references between processes
I Compact normal forms can be used for efficient(?) serialisation
I Feature request: CNFs could be mmap’d between processes



A Solution: Partitioning

Explicit heap partitions within a process.

Partition 1

nursery
block

gen 0
block

gen 1
block

gen 1
block

CNF
block

CNF
block

TSO

TSOTSO

Partition 2

nursery
block

gen 0
block

gen 0
block

gen 1
block

TSO

TSO

PChan



A Solution: Partitioning (message-passing)

-- | Similar to a TChan, but allowing sharing of values across
data PChan a

writeTChan :: PChan a -> a -> IO ()
readTChan :: PChan a -> IO a



A Solution: Partitioning

-- | A reference-counted "globalized" value
data PRef a

newPRef :: a -> IO (PRef a)

-- | Use a value held in a ’PRef’.
withPRef :: (a #-> b) -> PRef a -> b

-- Sadly, this is broken due to laziness.



“Arenas” via partitioning

ephemeral partitions:

I Run a thread in a partition

I After finished, tear down the world

Avoids GC entirely for sufficiently short-lived partitions.



Implementation

I Block descriptor: identify owner partition

I Capabilities can run threads from any partition

I mut_list must be flushed to global (non-capability-local)
remembered set when a capability switches partitions



The challenge of CAFs

CAFs are a shared resource.

A few options:

I Don’t update CAFs (yuck!)
I Introduce a new “per-partition” indirection type
I Globalize all CAF evaluations?



Volunteers?

Who wants to implement this?


