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The Problem
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The Problem

GC synchronization leads to poorly scaling across many cores.
Server applications have competing pressures:
» Low-latency wants small nurseries — lots of sychronization

» Multi-core scaling demands large nurseries (minimize
synchronization)



A Solution: Local heaps

Marlow 2011 1:
» Give each core its own independent nursery

» Prohibit references between local nurseries, allowing nursery
GCs to happen without synchronizations

P> “Globalise” data which is needed by other cores

» Implicit globalisation: non-obvious heuristics, hard to reason
about performance

!S. Marlow & S. Peyton-Jones. “Multicore garbage collection with local
heaps.” Proceedings of the 10th International Symposium on Memory
Management (2011)



A Solution: Multiple processes

forkM

ap

(NFData a, NFData b) -- ~ needed to build compact region

Int -— " number of workers to spawn

StaticPtr (a -> b) -- ~ StaticPtr since we must send function

-— across the wire
Producer a I0 r
Producer b I0 r

Communicate via pipes

StaticPtrs allow sharing of code references between processes
Compact normal forms can be used for efficient(?) serialisation
Feature request: CNFs could be mmap'd between processes



A Solution: Partitioning

Explicit heap partitions within a process.
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A Solution: Partitioning (message-passing)

-= | Similar to a TChan, but allowing sharing of values ac

data PChan a

writeTChan :: PChan a -> a -> I0 ()
readTChan :: PChan a -> I0 a



A Solution: Partitioning

-- | A reference-counted "globalized" value
data PRef a

newPRef :: a -> I0 (PRef a)
-- | Use a value held in a ’PRef’.

withPRef :: (a #-> b) -> PRef a -> b
-- Sadly, this is broken due to laziness.



“Arenas” via partitioning

ephemeral partitions:
» Run a thread in a partition
» After finished, tear down the world

Avoids GC entirely for sufficiently short-lived partitions.



Implementation

» Block descriptor: identify owner partition
» Capabilities can run threads from any partition

» mut_list must be flushed to global (non-capability-local)
remembered set when a capability switches partitions



The challenge of CAFs

CAFs are a shared resource.
A few options:

» Don't update CAFs (yuck!)
» Introduce a new “per-partition” indirection type
> Globalize all CAF evaluations?



Volunteers?

Who wants to implement this?



