Runtime partitions for scaling GHC programs

Ben Gamari

28 Aug 2020



The Problem

ben
ben
ben
ben
root
ben
root
root
root
root
root
root
root
ben
root
root
root

DOOOOODOOOOOODO DD

ITEEEEITETETE 17 .456/62.
1.076/9.316

[°H

il
il
54
43

51:

22:
i
Sl
B2

F8

00.37
57:05
45:50
45:38
03.56
17:11
03.79
04.30
01:43
04.56
12515
Sl
00:56
03:57
00:58
02.45
15.01
15.10
59.08

htop
htop
pulseaudio --daemonize=no

containerd

irgbalance --foreground




The Problem

GC synchronization leads to poorly scaling across many cores.
Server applications have competing pressures:
» Low-latency wants small nurseries — lots of sychronization

» Multi-core scaling demands large nurseries (minimize
synchronization)



A Solution: Local heaps

Marlow 2011 1:
» Give each core its own independent nursery

» Prohibit references between local nurseries, allowing nursery
GCs to happen without synchronizations

P> “Globalise” data which is needed by other cores

» Implicit globalisation: non-obvious heuristics, hard to reason
about performance

!S. Marlow & S. Peyton-Jones. “Multicore garbage collection with local
heaps.” Proceedings of the 10th International Symposium on Memory
Management (2011)



A Solution: Multiple processes

forkM

ap

(NFData a, NFData b) -- ~ needed to build compact region

Int -— " number of workers to spawn

StaticPtr (a -> b) -- ~ StaticPtr since we must send function

-— across the wire
Producer a I0 r
Producer b I0 r

Communicate via pipes

StaticPtrs allow sharing of code references between processes
Compact normal forms can be used for efficient(?) serialisation
Feature request: CNFs could be mmap'd between processes



A Solution: Partitioning

Explicit heap partitions within a process.

" Partition 1

\

B8R

w

" Partition 2

N\




A Solution: Partitioning (message-passing)

-= | Similar to a TChan, but allowing sharing of values ac

data PChan a

writeTChan :: PChan a -> a -> I0 ()
readTChan :: PChan a -> I0 a



A Solution: Partitioning

-- | A reference-counted "globalized" value
data PRef a

newPRef :: a -> I0 (PRef a)
-- | Use a value held in a ’PRef’.

withPRef :: (a #-> b) -> PRef a -> b
-- Sadly, this is broken due to laziness.



“Arenas” via partitioning

ephemeral partitions:
» Run a thread in a partition
» After finished, tear down the world

Avoids GC entirely for sufficiently short-lived partitions.



Implementation

» Block descriptor: identify owner partition
» Capabilities can run threads from any partition

» mut_list must be flushed to global (non-capability-local)
remembered set when a capability switches partitions



The challenge of CAFs

CAFs are a shared resource.
A few options:

» Don't update CAFs (yuck!)
» Introduce a new “per-partition” indirection type
> Globalize all CAF evaluations?



Volunteers?

Who wants to implement this?



