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Motivation

$ ghc -threaded EditDist.hs
$ ./EditDist +RTS -s

16,168,836,784 bytes allocated in the heap
5,417,286,976 bytes copied during GC
1,745,510,392 bytes maximum residency (13 sample(s))
3,260,424 bytes maximum slop
3416 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 15520 colls, Q par 1.695s 1.702s 0.0001s 0.0010s
Gen 1 13 colls, Q par 7.320s  7.328s 0.5637s 3.5480s
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The cause of the pause...

Garbage collection in GHC's existing collector:
» performs O(live heap size) work during major collection

» stops program execution for entirety of collection
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The cause of the pause...

Garbage collection in GHC's existing collector:
» performs O(live heap size) work during major collection
» stops program execution for entirety of collection

Copying GC remarkably difficult to incrementalize.
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection
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Copying garbage collection

Benefits:

v

Cheap allocation

Efficient: Scavenging has excellent locality

Compacting: Avoids fragmenting heap over successive collections
Easily implemented, parallelized

v

v

v

However, hard to perform without stop-the-world pause.
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The challenge of copying collection
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The challenge of copying collection
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The challenge of copying collection
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A new collector design

Generational collector:
» Retain moving collection for (bounded-size) young generations

» Non-moving heap with mark & sweep collection for oldest
generation

Eliminates long pauses:
» Young generations: STW collection with bounded duration

» Oldest generation: concurrent collection
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Garbage Collection Lifecycle
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Garbage Collection Lifecycle
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Garbage Collection Lifecycle
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Garbage Collection Lifecycle
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How to use it?

Build program with -threaded, run with +RTS --nonmoving-gc:

$ ghc -threaded EditDist.hs
$ ./EditDist +RTS -s --nonmoving-gc

16,168,831,672 bytes allocated in the heap
1,871,197,048 bytes copied during GC
1,962,037,024 bytes maximum residency (1@ sample(s))
489,828,576 bytes maximum slop
3001 MiB total memory in use (9 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 15523 colls, 0 par 2.946s  2.962s 0.0002s 0.0040s
Gen 1 10 colls, Q par 0.004s  0.004s 0.0004s 0.0014s
Gen 1 10 syncs, 0.001s 0.0001s 0.0004s
Gen 1 concurrent, 2.940s 5.888s 0.5888s 3.7217s
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Benchmarks: Response time
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Benchmarks: How much memory is lost to fragmentation?
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» Roughly 25% steady-state storage overhead due to fragm-entation
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Benchmarks: Allocation cost
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» Allocation cost increases, particularly with fragmentation
» Manifests as longer minor GCs
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What can you expect?

v

Much lower latencies for most programs (major collections
comparable to minor)
» Especially in the tail
Throughput reduction around 10%
» Due to locality, write barrier overhead
Memory footprint: increase of between 10% and 25%
» Due to allocation overhead, conservative marking
Other things to keep in mind:
» Unsafe foreign calls can introduce pauses

v

v

v
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» Optimization:
» Parallel marking
P Use address-space partitioning to reduce cost of generation checks
» Improve allocator bitmap representation to lower allocation cost
» Pause reduction:
P Abort final synchronization on long pre-sweep pause;
back-pressure
» Tune promotion heuristics to
» Allocation of pinned objects directly into non-moving heap
» Addresses problem of fragmentation due to pinned objects
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Questions?
For further implementation details see our paper at ISMM 2020.

Email: ben@well-typed.com
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