
A low-latency garbage collector for GHC
Ben Gamari Laura Dietz

Well-Typed



Motivation

$ ghc -threaded EditDist.hs
$ ./EditDist +RTS -s

...

16,168,836,784 bytes allocated in the heap
5,417,286,976 bytes copied during GC
1,745,510,392 bytes maximum residency (13 sample(s))

3,260,424 bytes maximum slop
3416 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 15520 colls, 0 par 1.695s 1.702s 0.0001s 0.0010s
Gen 1 13 colls, 0 par 7.320s 7.328s 0.5637s 3.5480s

...

Well-Typed



The cause of the pause. . .

Garbage collection in GHC’s existing collector:

I performs O(live heap size) work during major collection

I stops program execution for entirety of collection

Copying GC remarkably difficult to incrementalize.

Well-Typed



The cause of the pause. . .

Garbage collection in GHC’s existing collector:

I performs O(live heap size) work during major collection

I stops program execution for entirety of collection

Copying GC remarkably difficult to incrementalize.

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

Roots

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

fst

A'

evacuate

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

fst

A'

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

fst

A'

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

fst

A'

scavenge

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

fst

A'

evacuate

scavenge

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

fst

A'

(,)

B'

evacuate

scavenge

Well-Typed



Copying garbage collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

fst

A'

(,)

B'

Just

C'

I#

42

D'

C

D

Well-Typed



Copying garbage collection

Roots

fst

A'

(,)

B'

Just

C'

I#

42

D'

Well-Typed



Copying garbage collection

Benefits:

I Cheap allocation
I Efficient: Scavenging has excellent locality
I Compacting: Avoids fragmenting heap over successive collections
I Easily implemented, parallelized

However, hard to perform without stop-the-world pause.

Well-Typed



The challenge of copying collection

fst

A

(,)

B

Just

C

I#

42

D

from-space to-space

Roots

fst

A'

Well-Typed



The challenge of copying collection

fst

A

(,)

B

Just

C

I#

42

D

from-space
Just

X

to-space

Roots

fst

A'

Well-Typed



The challenge of copying collection

fst

A

(,)

B

Just

C

I#

42

D

from-space
Just

X

to-space

Roots

fst

A'

(,)

B'

Just

C'

I#

42

D'

Well-Typed



The challenge of copying collection

Just

X

Roots

fst

A'

(,)

B'

Just

C'

I#

42

D'

Well-Typed



A new collector design

Generational collector:

I Retain moving collection for (bounded-size) young generations

I Non-moving heap with mark & sweep collection for oldest
generation

Eliminates long pauses:

I Young generations: STW collection with bounded duration

I Oldest generation: concurrent collection

Well-Typed



Garbage Collection Lifecycle

Time

Start of
major GC

Enable
write barrier

Final
sync.

Begin
sweep

Concurrent
Collector

Capability 1

Capability 2

Preparatory
Pause

Concurrent
Marking

Final
Marking

Concurrent
Sweeping

Pre-sweep
Pause

Minor
Garbage Collection

Concurrent
Phase

Collect
Snapshot

Evacuate to
non-moving

heap

Evacuate to
non-moving

heap

Marking by Mutator

Mutator Execution

Concurrent Marking

Stop-the-World Pause

STW GC Task

Well-Typed



Garbage Collection Lifecycle

Time

Start of
major GC

Enable
write barrier

Final
sync.

Begin
sweep

Concurrent
Collector

Capability 1

Capability 2

Preparatory
Pause

Concurrent
Marking

Final
Marking

Concurrent
Sweeping

Pre-sweep
Pause

Minor
Garbage Collection

Concurrent
Phase

Marking by Mutator

Mutator Execution

Concurrent Marking

Stop-the-World Pause

STW GC Task

Well-Typed



Garbage Collection Lifecycle

Time

Start of
major GC

Enable
write barrier

Final
sync.

Begin
sweep

Concurrent
Collector

Capability 1

Capability 2

Preparatory
Pause

Concurrent
Marking

Final
Marking

Concurrent
Sweeping

Pre-sweep
Pause

Minor
Garbage Collection

Concurrent
Phase

Marking by Mutator

Mutator Execution

Concurrent Marking

Stop-the-World Pause

STW GC Task

Well-Typed



Garbage Collection Lifecycle

Time

Start of
major GC

Enable
write barrier

Final
sync.

Begin
sweep

Concurrent
Collector

Capability 1

Capability 2

Preparatory
Pause

Concurrent
Marking

Final
Marking

Concurrent
Sweeping

Pre-sweep
Pause

Minor
Garbage Collection

Concurrent
Phase

Marking by Mutator

Mutator Execution

Concurrent Marking

Stop-the-World Pause

STW GC Task

Well-Typed



How to use it?

Build program with -threaded, run with +RTS --nonmoving-gc:
$ ghc -threaded EditDist.hs
$ ./EditDist +RTS -s --nonmoving-gc

...

16,168,831,672 bytes allocated in the heap
1,871,197,048 bytes copied during GC
1,962,037,024 bytes maximum residency (10 sample(s))

489,828,576 bytes maximum slop
3001 MiB total memory in use (9 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 15523 colls, 0 par 2.946s 2.962s 0.0002s 0.0040s
Gen 1 10 colls, 0 par 0.004s 0.004s 0.0004s 0.0014s
Gen 1 10 syncs, 0.001s 0.0001s 0.0004s
Gen 1 concurrent, 2.940s 5.888s 0.5888s 3.7217s

...

Well-Typed



Benchmarks: Response time

Well-Typed



Benchmarks: How much memory is lost to fragmentation?

I Roughly 25% steady-state storage overhead due to fragmentation
and overhead.

I Compare with copying collector, which during collection has 100%
overhead during evacuation.

Well-Typed



Benchmarks: Allocation cost

I Allocation cost increases, particularly with fragmentation
I Manifests as longer minor GCs

Well-Typed



What can you expect?

I Much lower latencies for most programs (major collections
comparable to minor)
I Especially in the tail

I Throughput reduction around 10%
I Due to locality, write barrier overhead

I Memory footprint: increase of between 10% and 25%
I Due to allocation overhead, conservative marking

I Other things to keep in mind:
I Unsafe foreign calls can introduce pauses

Well-Typed



Future work

I Optimization:
I Parallel marking
I Use address-space partitioning to reduce cost of generation checks
I Improve allocator bitmap representation to lower allocation cost

I Pause reduction:
I Abort final synchronization on long pre-sweep pause;

back-pressure
I Tune promotion heuristics to

I Allocation of pinned objects directly into non-moving heap
I Addresses problem of fragmentation due to pinned objects

Well-Typed



Summary

Questions?

For further implementation details see our paper at ISMM 2020.

Email: ben@well-typed.com

Well-Typed

mailto:ben@well-typed.com

