A low-latency garbage collector for GHC

Ben Gamari Laura Dietz

= Well-Typed

Motivation

$ ghc -threaded EditDist.hs
$./EditDist +RTS -s

16,168,836,784 bytes allocated in the heap
5,417,286,976 bytes copied during GC
1,745,510,392 bytes maximum residency (13 sample(s))
3,260,424 bytes maximum slop
3416 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 15520 colls, Q par 1.695s 1.702s 0.0001s 0.0010s
Gen 1 13 colls, Q par 7.320s 7.328s 0.5637s 3.5480s

= Well-Typed

The cause of the pause...

Garbage collection in GHC's existing collector:
» performs O(live heap size) work during major collection

» stops program execution for entirety of collection

= Well-Typed

The cause of the pause...

Garbage collection in GHC's existing collector:
» performs O(live heap size) work during major collection
» stops program execution for entirety of collection

Copying GC remarkably difficult to incrementalize.

= Well-Typed

Copying garbage collection

’|fst\

\

= Well-Typed

Copying garbage collection

Roots N

‘f‘/ T fst | Just |
‘

\ \

L from space ~__ t0 space _—

i

,'/‘

y

= Well-Typed

Copying garbage collection

T_evacuate i D

Roots >

A B c \ J A
[fst_| () just |) fst
o - | 1
\ *— D | |
\ 1# [\ /‘"
! e] /

from-space - __ to-space /

= Well-Typed

Copying garbage collection

At B c \ L \‘
T () Just ‘ \ / \‘
| v/ | |

*—)
\ 1# \ |
\\\] |)
g - to-space //

~__ from-space

= Well-Typed

Copying garbage collection

Roots D T T

,'/‘

y

~__ from-space - ~__ to-space -

= Well-Typed

Copying garbage collection

Roots D _ T

,'/‘

y

~__from-space

~__ to-space -~

= Well-Typed

Copying garbage collection

T T evacuate i T

/
/
4

__ to-space /

from-space

= Well-Typed

Copying garbage collection

T evacuate i D
. .

Roots
/" A B c \ “*/ A B \
[o | Just Vst \
| | L

__ to-space /

from-space

M

= Well-Typed

Copying garbage collection

Roots D T T

oy

~__ from-space

~__ to-space -~

= Well-Typed

Copying garbage collection

Roots

Just |

o |
s /
1# /f“

= Well-Typed

Copying garbage collection

Benefits:

v

Cheap allocation

Efficient: Scavenging has excellent locality

Compacting: Avoids fragmenting heap over successive collections
Easily implemented, parallelized

v

v

v

However, hard to perform without stop-the-world pause.

= Well-Typed

The challenge of copying collection

Roots D T NG

,'/‘

y

~__ from-space ~__ to-space -

= Well-Typed

The challenge of copying collection

Roots D T NG

,'/‘

y

~__ from-space

~__ to-space -~

= Well-Typed

The challenge of copying collection

Roots D T NG

~__ from-space

~__ to-space -~

= Well-Typed

The challenge of copying collection

Roots

= Well-Typed

A new collector design

Generational collector:
» Retain moving collection for (bounded-size) young generations

» Non-moving heap with mark & sweep collection for oldest
generation

Eliminates long pauses:
» Young generations: STW collection with bounded duration

» Oldest generation: concurrent collection

= Well-Typed

Garbage Collection Lifecycle

Start of Enable Final Begin
major GC write barrier sync. sweep .
I I | | Time

t t t >

t
Evacuate to|
non-moving | Collect
Concurrent heap | Snapshot |
|

Collector |
|

Capability 1
|

Capability 2 D

Preparatory
Pause
Evacuate to
non-moving
heap Stop-the-World Pause

STW GC Task
Marking by Mutator

Mutator Execution

0000

Concurrent Marking

= Well-Typed

Garbage Collection Lifecycle

Start of
majolr GC

Final
syr|1c,

Enable
write lljarrier

Begin
sweep

I Time

t t t

| | |
|
Concurrent [

Concurrent

Collector Marking

Capability 1

Capability 2

Minor
Garbage Collection

Concurrent
Phase

0000

Stop-the-World Pause
STW GC Task
Marking by Mutator
Mutator Execution

Concurrent Marking

= Well-Typed

Garbage Collection Lifecycle

Start of Enable Final Begin
majolr GC write lljarrier syr|1c, sweep

t t t

Concurrent
Collector

Capability 1

Capability 2

Pre-sweep
Pause

Il Stop-the-World Pause

() STWGC Task

() Marking by Mutator
Mutator Execution

O
(C) Concurrent Marking

= Well-Typed

Garbage Collection Lifecycle

Start of
majolr GC

Enable
write lljarrier

Final
syr|1c,

Begin
sweep

I Time

t t t

Concurrent
Collector

Capability 1

Capability 2

>

t
|

)
Concurrent
Sweeping

o S A S
P — |

0000

Stop-the-World Pause
STW GC Task
Marking by Mutator
Mutator Execution

Concurrent Marking

= Well-Typed

How to use it?

Build program with -threaded, run with +RTS --nonmoving-gc:

$ ghc -threaded EditDist.hs
$./EditDist +RTS -s --nonmoving-gc

16,168,831,672 bytes allocated in the heap
1,871,197,048 bytes copied during GC
1,962,037,024 bytes maximum residency (1@ sample(s))
489,828,576 bytes maximum slop
3001 MiB total memory in use (9 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 15523 colls, 0 par 2.946s 2.962s 0.0002s 0.0040s
Gen 1 10 colls, Q par 0.004s 0.004s 0.0004s 0.0014s
Gen 1 10 syncs, 0.001s 0.0001s 0.0004s
Gen 1 concurrent, 2.940s 5.888s 0.5888s 3.7217s

= Well-Typed

Benchmarks: Response time

100 _
% 10714
[
o
(9]
[}
2
g 10—2 _
(9 /
C /,
% 4/ —— non-moving-A
- 10—3-/ moving-A
i --- non-moving-B
‘J‘ moving-B
-4 |
0% 90% 99% 99.9% 99.99% 99.999%

Percentile

= Well-Typed

Benchmarks: How much memory is lost to fragmentation?

100 ' }é‘]
o) 75-.«:“7"@52*5!; R S 23X | N
ge o g 3 AU x¥
o8 501 .
93 « 2%bytes
=8 254 + 2°bytes
x 2% bytes
O T ! ! L T T T
+
— 750+ .
n - .
o U
H; 4 +
© 2500+ _ e
©
02) 8 ,,_¢++ 5
= E 250' ’q);(.nx] % x % 5
= + X X { X X
OM‘F%.-- . P) ° e o ° |o o o .

0 25 50 75 100 125 150 175
elapsed time (seconds)

» Roughly 25% steady-state storage overhead due to fragm-entation
and overhead. = Well-Typed

Benchmarks: Allocation cost

105 N

3 k&'\,\ [alligator — search
é 102 - P copying — search
3 101 L anna |
ué 103 4 [alligator — map-test
pS copying — map-test
g 101 i
c i

10—1 F“-H].ILLm " . . ; :

0 2 4 6 8 10

minor collection pause time (milliseconds)

» Allocation cost increases, particularly with fragmentation
» Manifests as longer minor GCs

= Well-Typed

What can you expect?

v

Much lower latencies for most programs (major collections
comparable to minor)
» Especially in the tail
Throughput reduction around 10%
» Due to locality, write barrier overhead
Memory footprint: increase of between 10% and 25%
» Due to allocation overhead, conservative marking
Other things to keep in mind:
» Unsafe foreign calls can introduce pauses

v

v

v

= Well-Typed

» Optimization:
» Parallel marking
P Use address-space partitioning to reduce cost of generation checks
» Improve allocator bitmap representation to lower allocation cost
» Pause reduction:
P Abort final synchronization on long pre-sweep pause;
back-pressure
» Tune promotion heuristics to
» Allocation of pinned objects directly into non-moving heap
» Addresses problem of fragmentation due to pinned objects

= Well-Typed

Questions?
For further implementation details see our paper at ISMM 2020.

Email: ben@well-typed.com

= Well-Typed

mailto:ben@well-typed.com

