Some ideas for the Future of Cabal

Duncan Coutts

®Well-Typed

Some ideas for the Future of Cabal

* A language for build systems

Build systems

 Everybody has one

 Few people are
satisfied

« (Classic make
« GNU make

« SCons

« OMake

« CMake

e Ant

« Vesta
 Maak

e ...100's more

What make does right

» Tracks dependencies

- if you write correct rules
- If you do not use recursive make

 Parallel builds

 I[ncremental rebuilds

What is wrong with make

« Easy to write incorrect rules:
foo : bar

cat bar baz > foo

What is wrong with make

« Horrible hodgepodge of languages

*,0 *.hi1 : *.hs
T Dependency language
ghc -c $< -o S4@

N

Action meta-language

Action base-language (make macros -

(shell script) dynamically scoped,
call by name, imperative)

What is wrong with make

* Not expressive enough for dynamic
dependencies

*,0 *.hi : *.hs $(depsOf $<)
ghc -c $< -o $@

where depsOf hs = ...

Dynamic dependencies are
everywhere
* Environment

« Configuration

- Not all dependencies are files

Generating Makefiles does not work

 Many tools generate Makefiles

- Analyse environment, configuration and generate
dependencies

* Preprocessors and code generators break this
model

- requires interleaving dependency discovery and
running build actions

Existing research

e Classic “recursive make considered harmful”

- Lesson: track dependencies precisely
« Vesta (PLDI '00), Maak (SCM '03)

- Functional build description languages
- Tracks dependencies precisely

If you have to make clean

your build system is broken!

Properties of a better system

 Track all dependencies precisely
- Preferably correct by construction
* Interleave dependency discovery and reduction
« Correct
- for some value of correct
» Expressive

— To describe tricky build systems

Properties of a better system

« Make it impossible to specify untracked
dependencies
- Specify dependencies and action together
- Small set of correct primitives

readFile, writeFile, statFile

- Combinators for building bigger actions

|dea for a build DSL

« DSL Embedded in Haskell
data Build m a
build :: Build IO a -» IO a
« Parametrise over underlying monad
test :: Build FakeIO a - Trace
- Pure instance can be checked with QuickCheck
- Correctness properties expressed in terms of traces

|dea for a build DSL

» Applicative functor combinator for “static”
composition of dependency graphs

(<*>) ::m (a - b) > ma-mb
- Can see the graph structure of both sides statically
- Opportunity for parallelism and incremental rebuilds

|dea for a build DSL

* Monadic bind combinator for “dynamic”
composition of dependency graphs

(=<<) ¢ (a» mb) > ma-mb

- Right hand graph has to be reduced to a value
before we can see the shape of the left hand graph

- Expresses dynamic dependencies
« Should not be over-used

- Linear chains in the dependency graph prevent
incremental and parallel rebuilds

Some ideas for the Future of Cabal

« Constraint solving problems in package
deployment

Package Deployment

e apt-get xmonad
- Install xmonad and all of its dependencies
« Database of packages
- Packages identified by name and version
xmonad-0.8

- Dependencies on other packages by name and
version range

o ==, <, >= && , |l _
- e.g. xmonad-0.8 depends on X11 >= 1.4.1

The package problem

« Given

- A target (eg xmonad)

- A set of packages (eg debian or hackage repo)
* Find a solution

- A graph of exact package versions where each
package name appears at most once

- Satisfying all dependency version predicates

The package problem

» Example

- xmonad-0.4 build-depends: X11 >=1.21
- xmonad-0.8 build-depends: X11 >= 1.4.1
- X11-1.4 1
- X11-1.4.2

 Solution
- pick xmonad-0.8 and X11-1.4.2

The package problem

* In principle very hard

- NP-complete (proof from CNF-SAT [pdf])

- Someone made the point by encoding Sudoku
using debian repositories and apt-get

« Usually easy

- Large but easy instances of hard problem

- Different versions of the same package usually
nave similar dependencies

http://people.debian.org/~dburrows/model.pdf

The package problem

e« Some solutions are better than others

- Sometimes prefer using already installed packages
- Sometimes prefer the latest version
- General soft preferences “parsec < 3”

» Also require good error messages

- People want to know what to fix

Current Cabal approach

« Constraint solving based approach

- Written by someone who doesn't know how to write
constraint solvers

* No backtracking, incomplete solver
- But guarantees polynomial time

* Heuristics for the ordering of choices
« Almost good enough in practise

What we want in a solver

Easily express package constraints
- We also have conditional dependencies
Handle soft constraints / preferences

Find solutions more often
Produce comprehensible errors
Fast enough

- On repositories of a few 1,000 packages

A more principled approach?

« Can we apply standard solver techniques?
- SAT

- CP
* You could write a paper about a good 5‘

solution! //
« See also: ;

- http://www.edos-project.org/
- openSUSE 11 uses a SAT solver

http://www.edos-project.org/

