
Improvements to GHC’s parallel garbage collector
Douglas Wilson
2021-08-22 — Copyright © 2021 Well-Typed LLP

Well-Typed
The Haskell Consultants



Introduction

I Independent work conducted in summer of 2020/2021.
I Will be released in GHC 9.2
I Linux, amd64
I Improved cross-thread synchronisation in the garbage collector drastically reduces cputime

I Measurement of improvement
I Description of changes
I Some experiments

Well-Typed



Measurement of improvement
cd libraries/Cabal && ghc --make -j$i Setup.hs

Environment: AMD zen3, 8 physical cores, 16GB, Laptop, hyper-threading on, 12 core cpuset
Well-Typed



sched_yield in 60 seconds
implemented in kernel/sched/fair.c
GHC issue 9221
From sched_yield (2)man page:

sched_yield() causes the calling thread to relinquish the CPU. The thread is moved to the
end of the queue for its static priority and a new thread gets to run.
. . .
sched_yield() is intended for use with real-time scheduling policies (i.e., SCHED_FIFO
or SCHED_RR). Use of sched_yield() with nondeterministic scheduling policies such as
SCHED_OTHER is unspecified and very likely means your application design is broken.

sched_yield is either:
I A busy spin;
I Effectively lowering our priority by forfeiting our timeslice.

Because ghc launches assemblers and linkers, it more often experiences a lowering of
priority. Well-Typed

https://gitlab.haskell.org/ghc/ghc/-/issues/9221


Removing sched_yield calls

Don’t use sched_yield for busy-waits, use mutexes and condition variables.
Take care to identify and maintain invariants, and to minimize pthread_cond_broadcast.
Three places:

I GC entry
I GC exit
I work stealing

Well-Typed



GC entry and exit
1. All worker threads change from INACTIVE to STANDING_BY and block;
2. The gc leader waits in waitForGcThreads for all worker threads to reach

STANDING_BY;
3. The gc leader does some initialisation;
4. The gc leader calls wakeup_gc_threads, which sets the worker threads to RUNNING

and wakes them up;
5. All worker threads run out of work and change from RUNNING to

WAITING_TO_CONTINUE and block;
6. The gc leader waits in shutdown_gc_threads for all worker threads to reach

WAITING_TO_CONTINUE;
7. The gc leader does some cleanup;
8. The gc leader calls releaseGcThreads, which sets all worker threads to INACTIVE and

wakes them up.
Well-Typed



work stealing

1. Track the number of threads working with global variable gc_running_threads;
2. Threads that aren’t working are waiting for work to appear in other threads’ queues;
3. gc_running_threads reaching zero is the stop condition.

How to wake up threads when blocks are ready?
Signal (not broadcast) when a block is ready and gc_running_threads < n.

Well-Typed



Measuring sched_yield

Well-Typed



Introducing background noise
Run the same benchmarks, while running ‘stress-ng‘ simulataneously
stress-ng --cpu 0 --cpu-method ackerman --cpu-load 40

Well-Typed



Future work

I Investigate removing remaining sched_yield calls;
I Benchmarking on Windows, Darwin, ARM, etc.
I Investigate stack and cabal-install exploit ghc -j

Well-Typed



Links
code: https://github.com/duog/ghcbench
slides: https://github.com/duog/ghcbench/tree/master/hiw/hiw.pdf
ghc commits:

I baseline
I link: https://gitlab.haskell.org/duog/ghc/-/tree/pargc-baseline
I commit: 3a536b890f88c16166f4d68ecf1ed8f49dd6f661

I noanywork:
I link: https://gitlab.haskell.org/duog/ghc/-/tree/pargc-noanywork
I commit: ce0f280908c29c1608c4f62002d325e6b931d98d

I nospingc:
I link: https://gitlab.haskell.org/duog/ghc/-/tree/pargc-nospingc
I commit: 0dc550105acedb714f0902cfb3dfd8f03fa08272

Well-Typed

https://github.com/duog/ghcbench
https://github.com/duog/ghcbench/tree/master/hiw/hiw.pdf
https://gitlab.haskell.org/duog/ghc/-/tree/pargc-baseline
https://gitlab.haskell.org/duog/ghc/-/tree/pargc-noanywork
https://gitlab.haskell.org/duog/ghc/-/tree/pargc-nospingc

