Multi-core with less pain
Deterministic Parallel Programming with Haskell

Duncan Coutts

December 2012, Tech Mesh

2 Well-Typed

The Haskell Consultants

Briefly about myself...

Background in FP in academia and open source
Co-founded Well-Typed

Well-Typed

» Haskell consultancy
» Support, planning, development, training
» Help a wide range of clients: startups to multinationals

B Well-Typed

Parallelism & Concurrency

Parallelism # Concurrency

The goal

What’s the point?

B Well-Typed

The goal

What’s the point?

Making programs run faster.

B Well-Typed

The goal

What’s the point?

Making programs run faster.

Parallelism is all about making programs run faster by using
more hardware (like multiple CPU or GPU cores)

B Well-Typed

Parallelism is hard

Lots of reasons why parallelism is hard

>

have to understand our programs better

need to know which bits take most time to execute
need to know the dependencies within the program
parallel work granularity vs overheads

threads, shared variables, locks

non-deterministic execution

Some of these reasons are intrinsic, some depend on the
programming model we choose

B Well-Typed

Concurrency

Concurrency is about ways of structuring programs into
independent activities that can communicate and synchronise
with each other

» e.g. threads, shared variables and locks

» e.g. lightweight processes and message passing
» typically reacting to events from the outside world
» inherently non-deterministic

B Well-Typed

Concurrency is also hard!

Lots of reasons why concurrency is hard

deadlocks

data races

non-deterministic behaviour
testing possible interleavings

v

v

v

v

B Well-Typed

Concurrency makes parallelism even harder!

Many of the difficulties with parallelism are really difficulties with
concurrency

v

threads, shared variables, locks
non-deterministic execution
deadlocks

data races

v

v

v

Taking a sequential program and making it concurrent makes it

» more complicated
» harder to read, understand, test & maintain

It makes programmers grumpy!

B Well-Typed

Let’s not knock concurrency too much

Concurrency does have its place.

For some problems using concurrency simplifies programs.

The server example

Servers handling conversations with multiple clients:

Using a separate thread of control for each client we can
(mostly) just think about the interaction with that single client.

The alternative is dealing with the interactions with all clients
simultaneously, e.g. using a complex state machine.

B Well-Typed

Concurrency & parallelism

Parallelism

making programs run faster by using more hardware
like multiple CPU or GPU cores

Concurrency

ways of structuring programs into independent activities that
can communicate and synchronise with each other

These are orthogonal ideas

» one is about performance of running programs;
» the other is about the structure of programs.

B Well-Typed

Concurrency # parallelism

Why make this distinction between parallelism and
concurrency?

B Well-Typed

Concurrency # parallelism

Why make this distinction between parallelism and
concurrency?

So we can think about what we're really after.

If the goal is parallelism, then concurrency can be a distraction.

B Well-Typed

Concurrency # parallelism

Why make this distinction between parallelism and
concurrency?

So we can think about what we're really after.

If the goal is parallelism, then concurrency can be a distraction.

All combinations of concurrency and parallelism make sense:

\ No Concurrency Concurrency

No Parallelism | most programs! OS processes running on
a single core
Parallelism | ... OS processes running on

multiple cores

B Well-Typed

Parallelism and concurrency support in Haskell

Haskell supports both parallelism and concurrency

Relatively traditional approach to concurrency

» threads and shared mutable variables
» actors and other abstractions as libraries

Many different parallel styles

» expression style
» data flow style
» data-parallel style

Each implemented as a library (with some RTS support)

Different styles suitable for different kinds of problem

B Well-Typed

Brief aside about Haskell concurrency...

Concurrency in Haskell

Haskell has excellent concurrency support

uses 1O monad
lightweight threads
nicer locking/synchronisation primitive (MVar)

v

v

v

v

composable concurrency with STM
traditional style blocking file/network 1/0O

v

B Well-Typed

Lightweight threads

Haskell threads are very cheap

» 10s of 1000s is no problem

Threads scheduled across multiple cores

Blocking works as you would hope

» blocking on I/O only blocks individual Haskell thread, not
whole OS thread

» “safe” foreign calls only block individual Haskell thread
(RTS uses a pool of OS threads)

B Well-Typed

I/O done right

About the “Threads vs Events” debate...

B Well-Typed

I/O done right

About the “Threads vs Events” debate...

We can have our cake and eat it

» performance of event-based I/O
» programming model of traditional blocking 1/0

» no Node.js-style callback madness
» don’'t even need .NET style async/futures

» makes use of all cores

B Well-Typed

Parallelism without concurrency

Deterministic parallelism

Parallelism without concurrency is often called
deterministic or pure parallelism.

Means we write a program

» that is not explicitly concurrent;
» then execute it in parallel.

B Well-Typed

Deterministic parallelism

Parallelism without concurrency is often called
deterministic or pure parallelism.

Means we write a program

» that is not explicitly concurrent;
» then execute it in parallel.

Example: SQL queries

A query itself expresses no concurrency.
Queries are deterministic, given the state of the database.

The execution engine is free to use multiple cores to do the
work for a query.

B Well-Typed

Deterministic parallelism

Deterministic in the usual sense

» always gives the same answer, given the same inputs
» like an ordinary sequential program

And if it's deterministic then...

» does not depend on the scheduling or number of cores
» no data races
» no deadlocks

Sounds nice right?

B Well-Typed

Pure parallelism in expressions

Suppose fx and gy are expensive calculations.

In fx+ gy we have an opportunity to evaluate the two parts in
parallel.

B Well-Typed

Pure parallelism in expressions

Suppose fx and gy are expensive calculations.
In fx+ gy we have an opportunity to evaluate the two parts in

parallel.

Note that fx + gy does not express any concurrency.
It’s just a pure calculation!

The mechanism for evaluating the expression has the
possibility to use parallelism to get the results sooner.

We can push this idea a long way.

B Well-Typed

Side effects and safety

In a pure functional programming language like Haskell,
evaluating fx+ gy has no side effects.

So it is always safe to evaluate both parts in parallel, we will
always get the same answer.

B Well-Typed

Data parallelism

Closely related to the idea of parallelism within expressions is
data parallelism.

Data parallelism is all about doing the same operation to a
large number of data items. The operation on each item of data
is independent so they can all be done in parallel.

The typical examples are bulk operations on large vectors and
arrays.

B Well-Typed

A quick look behind the scenes...

Implementation

Behind the nice veneer of pure parallelism we need an
evaluation mechanism.

» At some level it must use OS threads.
» It must guarantee the deterministic properties.

» A good quality implementation is vital for performance and
correctness.

Fortunately we have the GHC multi-core runtime system (RTS)

B Well-Typed

GHC'’s multi-core runtime system

GHC has a very good runtime system.

» provides lightweight Haskell threads
(for concurrency support)

» uses one OS thread per core
» lightweight threads scheduled across multiple cores

» well-tuned generational GC

» per-core young GC generation
» old GC generation is shared
» parallel GC for old GC generation

B Well-Typed

Evaluating in parallel

Remember the example fx+gy

The RTS has special support for evaluating individual
expressions in parallel.

We can take an unevaluated expression and ‘spark’ it off.
This makes it available to be evaluated on another core.

For example, we could spark off fx on another core,
and let gy be evaluated as normal.

B Well-Typed

Spark evaluation system

N 1
HEC 0 &7 HEC 1

» per-core task queue

Terminology:

» ataskis called a ‘spark’
» atask queue is called a ‘spark pool’

B Well-Typed

Spark evaluation system

[] {‘%Z
xS
HEC 0 &2 HEC 1

» per-core task queue
» tasks created using par primitive function

Terminology:

» ataskis called a ‘spark’
» atask queue is called a ‘spark pool’

B Well-Typed

Spark evaluation system

] £
>

~ Pt -

HEC O HEC 1

» per-core task queue
» tasks created using par primitive function
» tasks run on any available core

Terminology:

» atask is called a ‘spark’
» atask queue is called a ‘spark pool’
» sparks get ‘converted’, meaning evaluated

B Well-Typed

Spark evaluation system

The spark evaluation system has quite low overheads:

v

the spark pool is a lock-free work stealing queue
each spark is just a pointer

evaluation is just calling a function pointer

no thread startup costs

v

v

v

Low overheads lets us take advantage of more fine grained
parallelism.

B Well-Typed

Spark evaluation system

The spark evaluation system has quite low overheads:

v

the spark pool is a lock-free work stealing queue
each spark is just a pointer

evaluation is just calling a function pointer

no thread startup costs

v

v

v

Low overheads lets us take advantage of more fine grained
parallelism.

But it’s still not free: parallel work granularity is still important.

B Well-Typed

The programmers view
of expression style parallelism

Deciding what to evaluate in parallel

We said it is always safe to evaluate both parts of fx+gy in
parallel.

Unfortunately we have no guarantee this will make it run faster.

B Well-Typed

Deciding what to evaluate in parallel

We said it is always safe to evaluate both parts of fx+gy in
parallel.

Unfortunately we have no guarantee this will make it run faster.

It depends on the granularity: if the amount of work done in
parallel overcomes the extra overhead of managing the parallel
evaluation.

B Well-Typed

Deciding what to evaluate in parallel

We said it is always safe to evaluate both parts of fx+gy in
parallel.

Unfortunately we have no guarantee this will make it run faster.

It depends on the granularity: if the amount of work done in
parallel overcomes the extra overhead of managing the parallel
evaluation.

Conclusion

Fully automatic parallelism will probably remain a dream.

The programmer has to decide what is worth running in parallel.

B Well-Typed

Specifying what to evaluate in parallel

The low level primitive function is called par
» implemented in the RTS by making sparks
It has a slightly strange looking type

par::a—b—Db

Operationally it means

» when the result is needed
» start evaluating the first argument in parallel
» evaluate and return the second argument

B Well-Typed

Using the low level par primitive, we would rewrite fx +gy as
let X' =fx

y =9y
in par x’ (pseq y’ (X' +y'))

It turns out we also need a primitive pseq to evaluate
sequentially (but the combination of the two is enough).

pseq::a—b—b

» evaluate the first argument
» then evaluate and return the second argument

B Well-Typed

Parallel evaluation strategies

The par and pseq primitives are very low level, and rather
tricky to use.

Haskell provides a library of higher level combinators parallel
strategies. A strategy describes how to evaluate things,
possibly in parallel.

type Strategy a
using ::a — Strategy a — a

There are a few basic strategies
r0 :: Strategy a -- none

rseq :: Strategy a -- evaluate sequentially
rpar :: Strategy a -- evaluate in parallel

B Well-Typed

Parallel evaluation strategies

Strategies can be composed together to make custom
strategies.

For example, a strategy on lists

parList :: Strategy a — Strategy [a]

» given a strategy for the list elements,
» evaluate all elements in parallel,
» using the list element strategy.

We would use this if we had a list of complex structures where
there was further opportunities for parallelism within the
elements. In simple cases we would just use parList rseq .

B Well-Typed

Strategies can help with granularity

It is very common that the structure of our data doesn’t give a
good granularity of parallel work.

We can use or write strategies that split or coalesce work into
better sized chunks.

For example:

parListChunk :: Int — Strategy a — Strategy [a]

» takes chunks of N elements at a time
» each chunk is evaluated in parallel
» within the chunk they’re evaluated serially

So it increases granularity by a factor of N.

B Well-Typed

Strategies can help with granularity

Example from a real program

reports ‘using’ parListChunk 10 rseq

» one line change to the program
» scaled near-perfectly on 4 cores

So we can get excellent results, but it’s often still tricky.

B Well-Typed

Parallel algorithm skeletons

Strategies try to completely separate the parallel evaluation
from the algorithm. That works well for data structures (like
lists, trees, arrays etc) but doesn’t work everywhere.

Sometimes we have to mix the parallel evaluation in with the
algorithm.

We can still use general algorithm skeletons, like divide and
conquer or map-reduce.

B Well-Typed

A map-reduce parallel skeleton

mapReduce :: Int — -- threshold
(Int, Int) — -- bounds
Strategy a — -- strategy
(nt—a)— -—-map
([a] #a) — --reduce
a

This version is for functions on integer ranges

recursively subdivide range until we hit the threshold

for each range chunk, map function over range

for each range chunk, reduce result using given strategy
reduce all intermediate results

vV v. vy

Having the threshold is important, or we would usually end up
with far too small parallel granularity.

B Well-Typed

Profiling tools

Parallelism is still hard

Even with all these nice techniques, getting real speed ups can
still be hard.

There are many pitfalls

» exposing too little parallelism, so cores stay idle
exposing too much parallelism

too small chunks of work, swamped by overheads
too large chunks of work, creating work imbalance
speculative parallelism that doesn’t pay off

v

v

v

v

Sparks have a few more

» might spark an already-evaluated expression
» spark pool might be full

We need to profile to work out the cause.

B Well-Typed

ThreadScope and event tracing

GHC’s RTS can log runtime events to a file
» very low profiling overhead
ThreadScope is a post-mortem eventlog viewer

Eile View Move Help

Bllkeesl aaq

KeY‘Tracslennkmarks Timeline

— running 0s 0.55 1s 155 A
— e I T (S|

create thread Activity
seq GC req

| par GC req

| migrate thread

thread wakeup

|
|
(NS
| adl
| ol
(NS

| ol fizzled spark

| ol

shutdewn

user message
create spark
dud spark
overflowed spark|

run spark

GCed spark

>

| HEco

HEC 1

Startup info | Spark sizes Raw events |

0,0002725
0.000277s
0.000278s
0.000280s

startup: 2 capabilities

created capset 0 of type CapsetOsProcess
created capset 1 of type CapsetClockDemain
assianed can 0 to canset 0

[ParTest3.eventlog (71547 events, 1.935s)

B Well-Typed

ThreadScope and event tracing

file View Move Help

Blles &8
ey [races | Bookmarks | Timeline
BN running
<9

Activity
create thread

seq GC req

| par GC req

| migrate thread
threadwakeup ||

| shutdown B

| user message]

| all create spark HECL

| ol dud spark

| all overflowed spark

| all runspark

| ol fizzled spark

| all Gced spark

HEC 2

HEC ®

A [BT
[ParTest4 eventlog (919480 events, 3.453s)

ThreadScope shows us

» Overall utilisation across all cores
» Activity on each core
» Garbage collection
B Well-Typed

ThreadScope and event tracing

Eile View Move Help
Bllees &8
Key Traces |Bookmarks | Timeline
Activity Profile = 0s 0.55 1s 1.55 2s 2.55 3s =l
b HEC Traces O | L L —— ‘ L ‘
b Instant Events |
= Spark Creation =
HEC 0 O
HEC 1 N
HEC 2 = 988
HEC 3 [} wecz
b Spark Conversion |:E 494
~ Spark Pool H p rkd
HEC 0 O o
Hec 1 I 8190 | ————————
HEC 2 | HEe®
Spark pool 4095
o} =l
| S L

|ParTest4‘event\og (919480 events, 3.453s)
Also some spark-related graphs:

» Sparks created and executed
» Size of spark pool
» Histrogram of spark evaluation times
(i.e. parallel granularity) B Well-Typed

Data parallelism with Repa

Introducing Repa

A library for data-parallelism in Haskell:

» high-level parallelism
» mostly-automatic

» for algorithms that can be described in terms of
operations on arrays

Notable features

v

implemented as a library

based on dense multi-dimensional arrays
offers “delayed” arrays

makes use of advanced type system features

v

v

v

B Well-Typed

http://www.youtube.com/watch?v=UGN0GxGEDsY

Introducing Repa

A library for data-parallelism in Haskell:

» high-level parallelism
» mostly-automatic

» for algorithms that can be described in terms of
operations on arrays

Notable features

v

implemented as a library

based on dense multi-dimensional arrays
offers “delayed” arrays

makes use of advanced type system features

v

v

v

Demo http://www.youtube.com/watch?v=UGNOGxGEDsY

B Well-Typed

http://www.youtube.com/watch?v=UGN0GxGEDsY

Arrays are the key data type in Repa. It relies heavily on types
to keep track of important information about each array.

Repa’s array type looks as follows:

data family Array r sh e -- abstract

B Well-Typed

Repa’s arrays

Arrays are the key data type in Repa. It relies heavily on types
to keep track of important information about each array.

Repa’s array type looks as follows:

data family Array[r sh e|] -- abstract

» there are three type arguments;

B Well-Typed

Repa’s arrays

Arrays are the key data type in Repa. It relies heavily on types
to keep track of important information about each array.

Repa’s array type looks as follows:

data family Array r sh[e] -- abstract

» there are three type arguments;
» the final is the element type;

B Well-Typed

Repa’s arrays

Arrays are the key data type in Repa. It relies heavily on types
to keep track of important information about each array.

Repa’s array type looks as follows:

data family Array[rilsh e -- abstract

» there are three type arguments;
» the final is the element type;
» the first denotes the representation of the array;

B Well-Typed

Repa’s arrays

Arrays are the key data type in Repa. It relies heavily on types
to keep track of important information about each array.

Repa’s array type looks as follows:

data family Array r[shle -- abstract

v

there are three type arguments;

the final is the element type;

the first denotes the representation of the array;
the second the shape.

v

v

v

B Well-Typed

Repa’s arrays

Arrays are the key data type in Repa. It relies heavily on types
to keep track of important information about each array.

Repa’s array type looks as follows:

data family Array r sh e -- abstract

v

there are three type arguments;

the final is the element type;

the first denotes the representation of the array;
the second the shape.

v

v

v

But what are representation and shape?

B Well-Typed

Array shapes

Repa can represent dense multi-dimensional arrays:

» as a first approximation, the shape of an array describes
its dimension;

» the shape also describes the type of an array index.

B Well-Typed

Array shapes

Repa can represent dense multi-dimensional arrays:

» as a first approximation, the shape of an array describes
its dimension;

» the shape also describes the type of an array index.

type DIM1
type DIM2

So DIM2 is (roughly) the type of pairs of integers.

B Well-Typed

Array representations

Repa distinguishes two fundamentally different states an array
can be in:

B Well-Typed

Array representations

Repa distinguishes two fundamentally different states an array
can be in:

» a manifest array is an array that is represented as a block
in memory, as we’'d expect;

B Well-Typed

Array representations

Repa distinguishes two fundamentally different states an array
can be in:

» a manifest array is an array that is represented as a block
in memory, as we’'d expect;

» a delayed array is not a real array at all, but merely a
computation that describes how to compute each of the
elements.

B Well-Typed

Array representations

Repa distinguishes two fundamentally different states an array
can be in:

» a manifest array is an array that is represented as a block
in memory, as we’'d expect;

» a delayed array is not a real array at all, but merely a
computation that describes how to compute each of the
elements.

Let’s look at the “why” and the delayed representation in a
moment.

B Well-Typed

Array representations

The standard manifest representation is denoted by a type
argument U (for unboxed).

For example, making a manifest array from a list

fromListUnboxed
:: (Shape sh,Unbox a) = sh — [a] — Array U sh a

example :: Array U DIM2 Int
example = fromListUnboxed (Z:.2:.5::DIM2) [1..10 :: Int]

B Well-Typed

Operations on arrays

map :: (Shape sh,Reprra) =
(a—b) — Arrayrsha — Array Dsh b

This function returns a delayed array (D).

B Well-Typed

Why delayed arrays?

We want to describe our array algorithms by using
combinations of standard array bulk operators

» nicer style than writing monolithic custom array code
» but also essential for the automatic parallelism

But if we end up writing code like this
(map fomap g) arr

Then we are making a full intermediate copy for every traversal
(like map).

Performing fusion becomes essential for performance — so
important that we'd like to make it explicit in the type system.

The delayed arrays are what enables automatic fusion in Repa.

B Well-Typed

Delayed arrays

Delayed arrays are internally represented simply as functions:

data instance Array D sh e = ADelayed sh (sh — e)

v

Delayed arrays aren’t really arrays at all.

Operating on an array does not create a new array.
Performing another operation on a delayed array just
performs function composition.

If we want to have a manifest array again, we have to
explicitly force the array.

v

v

v

B Well-Typed

Creating delayed arrays

From a function:

fromFunction :: sh — (sh — a) — Array D sh a

Directly maps to ADelayed .

B Well-Typed

The implementation of map

map :: (Shape sh,Reprr a)
= (@ —b) — Arrayrsha — Array Dsh b
map f arr = case delay arr of
ADelayed sh g — ADelayed sh (fo Q)

B Well-Typed

The implementation of map

map :: (Shape sh,Reprr a)
= (@ —b) — Arrayrsha — Array Dsh b
map f arr = case delay arr of
ADelayed sh g — ADelayed sh (fo Q)

Many other functions are only slightly more complicated:

» think about pointwise multiplication (x.),

» or the more general zipWith .

B Well-Typed

Forcing delayed arrays

Sequentially:

computeS :: (Fillr1 r2she) =
Array r1 she — Array r2 sh e

B Well-Typed

Forcing delayed arrays

Sequentially:

computeS :: (Fillr1 r2she) =
Array r1 she — Array r2 sh e

In parallel:

computeP :: (Monad m, Repr r2 e, Fill r1 r2 she) =
Array r1 she — m (Array r2 sh e)

This is the only place where we specify parallelism.

B Well-Typed

Forcing delayed arrays

Sequentially:

computeS :: (Fillr1 r2she) =
Array r1 she — Array r2 sh e

In parallel:

computeP :: (Monad m, Repr r2 e, Fill r1 r2 she) =
Array r1 she — m (Array r2 sh e)

This is the only place where we specify parallelism.
Key idea

Describe the array we want to compute (using delayed arrays).

Compute the array in parallel.

B Well-Typed

“Automatic” parallelism

Behind the scenes:

» Repa starts a gang of threads.
» Depending on the number of available cores, Repa assigns
chunks of the array to be computed by different threads.

» The chunking and scheduling and synchronization don'’t
have to concern the user.

So Repa deals with the granularity problem for us (mostly).

B Well-Typed

Repa Summary

Describe algorithm in terms of arrays
The true magic of Repa is in the computeP -like functions,
where parallelism is automatically handled.
Haskell’s type system is used in various ways:
» Adapt the representation of arrays based on it’s type.
» Keep track of the shape of an array, to make fusion explicit.
» Keep track of the state of an array.
A large part of Repa’s implementation is actually quite
understandable.

v

v

v

v

B Well-Typed

Summary

A range of parallel styles

The ones we looked at

» expression style
» data parallel style
» and yes, concurrent

These are now fairly mature technologies

Others worth mentioning

» data flow style
» nested data parallel
» GPU

B Well-Typed

Practical experience

We ran a 2-year project with MSR to see how real users
manage with parallel Haskell

» mostly scientific applications, simulations
» one group working on highly concurrent web servers
» mostly not existing Haskell experts

No significant technical problems

» we helped people learn Haskell
» developed a couple missing libraries
» extended the parallel profiling tools

B Well-Typed

Practical experience

Los Alamos National Laboratory

>

>

>

>

high energy physics simulation
existing mature single-threaded C/C++ version

parallel Haskell version 2x slower on one core
but scaled near perfectly on 8 cores

Haskell version became the reference implementation
C version ‘adjusted’ to match Haskell version

also distributed versions: Haskell/MPI and Cloud Haskell

Happy programmers!

B Well-Typed

That'’s it!

Thanks!

Questions?

B Well-Typed

Repa example

Example: 1-D Poisson solver

Specification as code

phiki|k=0 =0
|li<OVix>sites=0
| otherwise =
(phi(k—1)(i—1)+phi(k—1)(i+1))/2
+h/2xrhoi
rhoi |i=sites'div'2=1
| otherwise =0
h=0.1 --lattice spacing
n=10 -- number of sites

B Well-Typed

Example: 1-D Poisson solver — contd.

Data dependencies

'0 i nsifes-l

» whole row could be calculated in parallel
» other parallel splits not so easy and will duplicate work

B Well-Typed

Example: 1-D Poisson solver — contd.

Serial array version of the inner loop

philteration :: UArray Int Double — UArray Int Double
philteration phik1 =
array (0,n+ 1) [(i,phii) | i<+ [0..n+1]]

where
phii|i=0Vvi=n+1=0
phii= (phik1!(i—1)+phik1!(i+1))/2
+h/2xrhoi

» uses immutable arrays
» new array defined in terms of the old array

» we extend the array each end by one to simplify boundary
condition

B Well-Typed

Example: 1-D Poisson solver — contd.

Parallel array version of the inner loop

philteration :: Array U DIM1 Double — Array U DIM1 Double
philteration phik1 = computeP (fromFunction (extent phik1) phi)
where
phi(Z:.i)|i=0Vvi=n+1=0
phi (Z i) = (phik1!(i—1)+phik1!(i+1))/2
+h/2xrhoi

» define the new array as a delayed array
» compute it in parallel

B Well-Typed

More performance tricks

A few tricks gets us close to C speed

» Unsafe indexing
» Handelling edges separately

Comparison with C OpenMP version

Cores OpenMP Repa

time speedup time speedup
1 22.0s 1x 25.3s 1x
4 6.9s 3.2x 11.4s 2.2%
8 5.3s 42x 8.4s 3.0x

B Well-Typed

Larger Repa example: Matrix multiplication

» Implement naive matrix multiplication.
» Benefit from parallelism.
» Learn about a few more Repa functions.

This is taken from the repa-example package which contains
more than just this example.

B Well-Typed

Start with the types

We want something like this:

mmultP :: Monad m =
Array U DIM2 Double — Array U DIM2 Double —
m (Array U DIM2 Double)

» We inherit the Monad constraint from the use of a parallel
compute function.

» We work with two-dimensional arrays, it's an additional
prerequisite that the dimensions match.

B Well-Typed

We get two matrices of shapes Z:. h1:. w1 and
Z:.h2:. w2:

» we expect wi and h2 to be equal,

v

the resulting matrix will have shape Z:. h1:. w2,

we have to traverse the rows of the first and the columns of
the second matrix, yielding one-dimensional arrays,

for each of these pairs, we have to take the sum of the
products,

and these results determine the values of the result matrix.

v

v

v

B Well-Typed

We get two matrices of shapes Z:. h1:. w1 and
Z:.h2:. w2:

» we expect wi and h2 to be equal,
» the resulting matrix will have shape Z:. h1:. w2,

» we have to traverse the rows of the first and the columns of
the second matrix, yielding one-dimensional arrays,

» for each of these pairs, we have to take the sum of the
products,

» and these results determine the values of the result matrix.

Some observations:

» the result is given by a function,
» we need a way to slice rows or columns out of a matrix,

B Well-Typed

Starting top-down

mmultP :: Monad m =
Array U DIM2 Double — Array U DIM2 Double —
m (Array U DIM2 Double)
mmultP m1 m2 =
do
let (Z:.h1:.wl) = extent m1
let (Z:.h2:. w2) = extent m2
computeP (fromFunction (Z:.h1:.w2)
(MZ:r .c)—..)

B Well-Typed

A quite useful function offered by Repa is backpermute :

backpermute :: (Shape sh1, Shape sh2,Reprre) =
sh2 — -- new shape
(sh2 — sh1) — -- map new index to old index

Array r sh1 e — Array D sh2 e

» We compute a delayed array simply by saying how each
index can be computed in terms of an old index.

» This is trivial to implement in terms of fromFunction .

B Well-Typed

Slicing — contd.

We can use backpermute to slice rows and columns.

sliceCol ::Reprre = Int — Array r DIM2 e — Array D DIM1 e
sliceCol ca=

let (Z:.h:.w)=-extenta

in backpermute (Z:.h) (AM(Z:.r)—(Z:.r:.c))a
sliceRow :: Reprre = Int — Array r DIM2 e — Array D DIM1 e
sliceRowr a =

let (Z:.h:.w)=-extenta

in backpermute (Z:.w) (AM(Z:.¢c) = (Z:.r:.c))a

B Well-Typed

Slicing — contd.

We can use backpermute to slice rows and columns.

sliceCol ::Reprre = Int — Array r DIM2 e — Array D DIM1 e
sliceCol ca=

let (Z:.h:.w)=-extenta

in backpermute (Z:.h) (AM(Z:.r)—(Z:.r:.c))a
sliceRow :: Reprre = Int — Array r DIM2 e — Array D DIM1 e
sliceRowr a =

let (Z:.h:.w)=-extenta

in backpermute (Z:.w) (AM(Z:.¢c) = (Z:.r:.c))a

>>> computeUnboxedS (sliceCol 3 example)
AUnboxed (Z :. 2) (fromList [4,9])

Note that sliceCol and sliceRow do not actually create a new

array unless we force it!
B Well-Typed

Slicing — contd.

Repa itself offers are more general slicing function (but it’s
based on the same idea):

slice :: (Slice sl, Shape (SliceShape sl), Shape (FullShape sl),
Reprre) =
Array r (FullShape sl) e — sl — Array D (SliceShape sl) e

A member of class Slice :

» looks similar to a member of class Shape ,
» but describes two shapes at once, the orginal and the
sliced.

B Well-Typed

Slicing — contd.

Repa itself offers are more general slicing function (but it's
based on the same idea):

slice :: (Slice sl, Shape (SliceShape sl), Shape (FullShape sl),
Reprre) =
Array r (FullShape sl) e — sl — Array D (SliceShape sl) e

A member of class Slice :

» looks similar to a member of class Shape ,
» but describes two shapes at once, the orginal and the
sliced.

sliceCol, sliceRow :: Reprr e =
Int — Array r DIM2 e — Array D DIM1 e
sliceColc a=slicea(Z:. All:.c)
sliceRowra=slicea (Z:.r :.All)
B Well-Typed

Putting everything together

mmultP :: Monad m =
Array U DIM2 Double — Array U DIM2 Double —
m (Array U DIM2 Double)
mmultP m1 m2 =
do
let (Z:.h1:.wl)=extent m1
let (Z:. h2:. w2) = extent m2
computeP (fromFunction (Z :. h1 :. w2)
(MZ:.r:.c)—
sumAllS (sliceRow r m1 x. sliceCol ¢ m2)

)

That’s all. Note that we compute no intermediate arrays.

B Well-Typed

