Overloaded Record Fields for Haskell

Skills Matter — In The Brain

Adam Gundry

April 28, 2014 — Copyright (© 2014 Well-Typed LLP

= Well-Typed

The Haskell Consultants

Once upon a time...

data Shape = Circle { centre :: Point, radius :: Int }
| Rect {centre:: Point, width :: Int, height :: Int}

centre :: Shape — Point
centre (Circlec —)=c¢
centre (Rect ¢ _ _)=c

radius :: Shape — Int
radius (Circle _r) =r
radius (Rect _ _ _) = error "?"

B Well-Typed

The way we live now

data Authorization dstaChanel)
= Authorization { iy o W barkey
-aut._id :+ AuthorizationID, e nideos £ St
-aut_organization_id :: Organizationl| D7 chn-prep.state VideoPrepsiate
—aut_user_id et Maybe Miliseconds,
TAut_username e 15 Maybe Data Text ipternal Text }
-aut_password :: Password,
-aut_is_temporary AuthlsTmp,
-aut_ke :: AuthorizationKey,
-aut_admin Maybe AdmmlstratorType7 g
_aut_created_at :: CreatedAt, :%i“"’”"f%”
_aut_updated_at :: UpdatedAt} e
data Avatar
= Avatar {
,aw type AvatarType,

Maybe AvatarMasterKey,

s
Maybe AvatarMasterKey,

-avr_master _ke)

Zavr_current_vérsion ' AvatarVersion, aybe Stare
-avr_history) AvatarMasterKey, jaybe Authorization
-avr.master s3uri Maybe S N EroErm
Zavr_viewable_s3uri i Maybe S3URI e Commec .
Zavr_filename Maybe UploadFilename, be ovee,
-avr-magic.string AvatarMagicString } e Devics ten
data Booking 27be Group
Baotoe { 27be Imtation
BookingiD. 2/be Reflection
biGuser_id o vbe Settn
1D, be Share
i T B, vbe User
privass) vbe oz 7be Vid
b Even vbe S
ybe EventiD vbe Authorzation
vbe EventlD vbe Book
“bkedevcedd fceiD vbe Commen
s 37t Confguration
it TCTime. vbe Devic
e 2
ybe UserD: 2
i B
ybe Relectioni> 2
Tbigoacthe Coptane 5
bk updated.at Gdiveiniy S eronee vbe Group}

Copyright (© 2014 Iris Connect

B Well-Typed

The problem

data Person = Person { name :: String, age :: Int}
data Cat = Cat {name: String}

GHC says:

test.lhs:2:28:
Multiple declarations of ‘name’
Declared at: test.lhs:1:28
test.lhs:2:28

B Well-Typed

Disambiguation by prefix/suffix

data Person = Person { personName :: String, personAge :: Int }
data Cat = Cat {catName : String}

This works, but:

> it's verbose
» how do you keep track of the affixes?

» why must we tell the typechecker things it already knows?

B Well-Typed

Where we're going

Design goals for OverloadedRecordFields

Demo

How it works, more or less
Record update and lenses

Looking forward

B Well-Typed

Design goals for OverloadedRecordFields

» Use the same field in multiple records
» As simple as possible

» No new syntax!
» No anonymous/extensible records

» Interoperate with existing code

» Data types declared in modules without the extension
» Libraries need not force the extension on their users

B Well-Typed

Implementation

v

Took 3 months over Summer 2013

v

GHC's codebase is scary

v

| couldn’t have done it without help

v

There will be bugs

B Well-Typed

B Well-Typed

Demo

GHCi, version 7.9.20140418: http://www.haskell.org/ghc/

Loading package ghc-prim ... linking ... done.
Loading package integer—-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude> :set -XOverloadedRecordFields

Prelude> data Person = Person { name :: String }
Prelude> data Cat = Cat { name :: String }
Prelude> name (Person "Adam")

"Adam"

Prelude> name (Cat "Jeoffry")

"Jeoffry"

Prelude> :t name
name :: GHC.Records.Accessor t tl1 "name" t2 => t tl1 t2

B Well-Typed

How it works, more or less

data Person = Person { name :: String, age :: Int }

name:r {name::t} =r—t
name = getField (proxy# :: Proxy# "name")

v

r {name :: t} is like a typeclass constraint

v

“the type r has a field name of type t”

v

Solved automatically when a suitable record field is in scope

v

Actually uses a built-in magic typeclass Has r "name" t

B Well-Typed

The record update problem

Haskell's traditional record update syntax is clumsy but powerful

» Type-changing update
» Update multiple fields at once:

data Pair a = Pair {x 1 a,y :: a}

foo :: Pair Char — Pair Bool
foo r = r {x = True,y = isDigit (y r)}

bar r =r {x = True} {y = isDigit (y r)}

B Well-Typed

Record update for overloaded fields

» Don't try to be clever!
» Require a type signature to resolve ambiguity

» At least this is simple and backwards-compatible

foo :: Pair Char — Pair Bool
foo r =r {x = True,y = isDigit (y r)}

foo r = (r :: Pair Char) {x = True, y = isDigit (y r)}

foor =r {x = True,y = isDigit (y r)} :: Pair Bool

B Well-Typed

Record update the ugly way

type family UpdTy r (n:: Symbol) ¢ :: x
setField :: Proxy#n —r —t — UpdTy rnt

Instead of

bazr=r{age=30}

we can write

baz r = setField (proxy# :: Proxy# "age") r (30 :: Int)

Yuk!

B Well-Typed

Lenses to the rescue

A lens combines a getter and setter for a field:

data Lens r a
get::lensra— r—a
set :lensra—a—r—r

» A record field corresponds not just to a getter, but to a lens!
» Lens libraries provide combinators for working with lenses

» But which lens library should we pick?

B Well-Typed

Abstraction over lens libraries

name :: Accessor p r "name" t = p rt
name = field (proxy# :: Proxy# "name")

» Pick p = (—) to get back selector functions
name (Person "Adam" 26) :: String

» Or p = Lens
set age 27 (Person "Adam" 26)

» Lens libraries can give their own instances of Accessor

B Well-Typed

Warts and all

v

Record projections must be brought into scope somehow

v

Type inference error messages

v

Cannot overload higher-rank fields
Multiple field update

v

v

van Laarhoven lenses require a wrapper type

B Well-Typed

OverloadedRecordFields in HEAD Real Soon Now™

v

v

Gather feedback from users, tweak design, fix some bugs
Projected to be released in GHC 7.10

Syntax for projections: perhaps rec# x instead of x rec?

v

v

OverloadedDataConstructors?

v

v

More coherent story about special-purpose constraint solving

B Well-Typed

Thanks and acknowledgments

v

Google Summer of Code

v

Simon Peyton Jones
Edward Kmett

v

» Many more...

B Well-Typed

Here be dragons

B Well-Typed

The Has typeclass

type family FIdTy (r :: %) (n:: Symbol) :: %

class t ~ FIdTy r n = Has r (n:: Symbol) t where
getField :: Proxy#n —r — t

type instance FIdTy Person "name" = String

instance t ~ String = Has Person "name" t where
getField _ = name

B Well-Typed

The Upd typeclass

type family UpdTy (r :: %) (n:: Symbol) (¢ :: %) :: %
class (Has r n (FIdTy r n),t ~ UpdTy r n (FIdTy r n))
= Upd r (n:: Symbol) t where
setField :: Proxy#n —r —t — UpdTy rnt

type instance UpdTy Person "name" t = Person

instance t ~ String = UpdTy Person "name" t where
setField _ (Person _ a) n = Person n a

B Well-Typed

Accessor

class Accessor (p:: % — % — %) r (n:: Symbol) t where
accessField :: Proxy# n
— (Hasrnt=r—t)
— (forall ' .Upd rnt' = r —t' — UpdTy r nt')
—prt
instance Has r n t = Accessor (—) r n t where
accessField _ getter _ = getter

field :: Accessor p r nt = Proxy# n — prt
field z = accessField z (getField z) (setField z)

B Well-Typed

	Design goals for OverloadedRecordFields
	Demo
	How it works, more or less
	Record update and lenses
	Looking forward

