Strong Types and Pure Functions
Enforcing control of side effects in interfaces

Duncan Coutts
®Well-Typed

Functional Programming eXchange 2009

Before we start. .. syntax

let getInterestingNumber
(cities:Map<string, int>) (population:Map<int,int>)
(cityName:string) :int Option =
maybe {
let! zipCode = cities.TryFind ciyName
let! cityPopulation = population.TryFind zipCode
return cityPopulation = 100 / TOTAL_POPULATION }

getinterestingNumber :: Map String Int — Map Int Int
— String — Maybe Int

getinterestingNumber cities population cityName = do
zipCode — Map.lookup citName cities
cityPopulation — Map.lookup zipCode population
return (cityPopulation = 100 / totalPopulation)

Before we start. .. syntax

let getInterestingNumber
(cities:Map<string, int>) (population:Map<int,int>)
(cityName:string) :int Option =
maybe {
let! zipCode = cities.TryFind ciyName
let! cityPopulation = population.TryFind zipCode
return cityPopulation = 100 / TOTAL_POPULATION }

getinterestingNumber cities population cityName = do
zipCode — Map.lookup citName cities
cityPopulation — Map.lookup zipCode population
return (cityPopulation = 100 / totalPopulation)

Why limit side effects?

e Lots of reasons to reduce side effects in general
e Some tasks require side effects

e Sometimes we wish to guarantee the absence of
certain side effects but still allow other side effects

Where guaranteed limits are useful

Frameworks with callbacks (don’t trust external code)
e May require promises from callbacks, e.g.
¢ no hidden shared state
e transaction safe
« disciplined use of expensive resources
e May require visibility into callbacks, e.g.
e synchronisation mediated by the framework
e dynamic checks

Internal interfaces in a system (don’t trust your own code!)

Our goal

We want to design interfaces so that the implementations
e may not use certain effects
e may use some effects

We want strong guarantees

How to enforce control of effects?

e Restricting particular side effects is hard
e Build up, not down

e start with no side effects
e add just the effects you wish to allow

Types tell us what functions can do

In a pure FP language, functions have no effects at all
f-A—B

Effectful actions can do anything
f:A—I10B

Types let us “tag” the effects

Simple case

Return pure descriptions of what to do

Example: serving HTTP requests
type Handler = Request — Response

But what about
e talking to a DB
e expensive resources
e waiting on other servers

Restricted actions

We have both extremes

f:A— B
f:A—I10B

Want to build restricted actions

f:: A— Sandbox B

Building sandboxes

Want restricted actions

f:: A— Sandbox B

e Build pure description of effectful actions
e Must be able to describe complex compound actions
e Trusted interpreter performs the effects

interpret :: Sandbox a — 10 a

Describing effects: monads

This is not a tutorial on monads!

Monads are how we give pure descriptions of actions with
side effects

What effects we can describe

Monad pattern can describe

Mutable state
Input/Output
Exceptions
Concurrency

IO monad already contains all of these

We get to pick and mix when we build our own

What effects we can describe

Monad pattern can describe

e Mutable state e Co-routines

e Input/Output e Continuations

e Exceptions e Backtracking

e Concurrency e Non-determinism

IO monad already contains all of these

We get to pick and mix when we build our own

Example: hooks in a build system

Build system with hooks for custom actions:
configure, build, etc.

Many rules custom actions should respect, e.g.
e Should not modify files outside of build dir
e Should respect installation prefix

Need some introspection into custom actions
e Debugging, logging
e Track build dependencies

Must be able to run complex custom actions

Interface

We’'ll define a “Sh” shell monad and use it in the interface

data BuildHooks = BuildHooks {

configureHook :: PkgDescription
— ConfigureFlags
— Sh Buildinfo,

buildHook :: PkgDescription
— BuildInfo
— BuildFlags
— Sh(),

Pure action description

Explicit, pure description of actions

data Action a =

Stop a
| Fail String
| ReadFile FilePath (String — Action a)

| WriteFile FilePath String (Action a)

Last field in each case is the next action

Types and pure functions guarantee no unexpected
hidden effects here

Example action description

Action data structures look like

copyFile :: FilePath — FilePath
— Action a — Action a
copyFile from to next =
ReadFile from (Acontent —
WriteFile to content next)

e Data structure contains lots of (pure) functions
e “next” parameter appears in lots of places

We do not want to have to write code like this!

Trusted interpreter

Trusted interpreter performs the effects

interpret :: Action a — 10 a

interpret (Stop result) = return result

interpret (Fail msg) = fail msg

interpret (ReadFile file next) = do
content — System.lO.readFile file
interpret (next content)

interpret (WriteFile file content next) = do
System.1O.writeFile file content
interpret next

Example: interpret

Actually perform the action we described

interpret (copyFile "a.txt™ "b.txt" (Stop ()))

Pure simulator

simulate :: [String] — Action a — [String]

simulate log (Stop _) = reverse log
simulate log (Fail msg) =
letentry = "failed: " H# msg
in reverse (entry : log)

simulate log (ReadFile file next) =
let content = " (contents of " Hfile4 ")"
entry = "read " -+ file
in simulate (entry : log) (next content)

simulate log (WriteFile file content next) =
let entry = "write " #file-+" ™ + content
in simulate (entry : log) next

Building Action descriptions

We want to build Action descriptions in a nicer way

Would like to write

copyFile from to = do
content — readFile from
writeFile to content

Uses the monad syntax

Shell monad

Definition of shell monad

newtype Sh a =
MkShell (¥r. (a — Action r) — Action r)

unShell :: Sh a — (a — Action r) — Action r
unShell (MkShell sh) next = sh next

Standard definition of a “continuation monad”

Shell monad

Standard continuation monad instance

instance Monad Sh where
return a = MkShell (Anext — next a)

m>=f = MkShell (Anext —
unShell m (A\a — unShell (f a) next))

fail msg = MkShell (A_ — Fail msg)

Hides all the plumbing of the “next” parameter

Running shell actions

asAction :: Sh a — Action a
asAction sh = unShell sh Stop

runShell :: Sha — 10 a
runShell = interpret o asAction

debugShell :: Sh a — [String]
debugShell = simulate [] o asAction

e Use Sh monad to construct Action data structure
e Interpret Action data structure

Shell monad primitive actions

Definition of primitive effectful Sh actions

readFile :: FilePath — Sh String
readFile file =
MkShell (Anext — ReadFile file next)

writeFile :: FilePath — String — Sh ()
writeFile file content =
MkShell (A\next — WriteFile file content (next ()))

Client code will not use the Action data structure directly

Shell examples

Can now write the copyFile example

copyFile :: FilePath — FilePath — Sh ()
copyFile from to = do

content < readFile from

writeFile to content

Use standard monad functions to help make more
complex actions

cat :: [FilePath] — FilePath — Sh ()
cat files target = do
contents — mapM readFile files
writeFile target (concat contents)

Introspection

Now we have visibility into key actions
e Can do various dynamic checks
e Can change the behaviour

e Just change the interpreter!
(or add another interpreter)

Example: Web request handling

Web app framework
e Framework provides state/DB service

e Otherwise require page handlers to be stateless
(so they can safely be run concurrently)
e Could provide read-only access to static files

e Use dynamic checks to guarantee only access to files
inside web root

Example: DB connections

Application plugin that is permitted access to DB
e Can provide safe access to DB connection
e Could permit only queries
e Could enforce disciplined resource control

withResource :: Options
— (Resource — DbPlugin a)
— DbPlugin a

block scoped

withResource opts $ A\res — do

Related approaches

Using an explicit data structure to represent actions is a
“deep embedding”

asAction :: Sh a — Action a
interpret :: Action a — 10 a

Can also use “shallow embedding”: fuses interpreter with
definition of monad and primitive actions

runShell :: Sha — 10 a

Concerns: is it too slow?

High performance web servers built with this
technique

Co-routines between compiled code
Overhead depends on granularity of operations
Lower overhead possible with shallow embedding

Concerns: is it extensible?

Might need several types of restricted action, each
extending the previous

e Use type classes
o Easier with shallow embedding

Next steps

Concepts
e Functors, Monads
e MTL — Monad Transformer Library

Books
e “Programming in Haskell” — best quickstart
¢ “Real World Haskell” — good coverage, very practical

Summary

Continuum of custom restricted effects
A — B
2 A— ShB
.:: A— IO B

Pick the effects you want to allow
Design your interface
Types enforce the interface contract

