Lazy Evaluation
ZuriHac 2023

Andres Loh
2023-06-11 — Copyright © 2023 Well-Typed LLP

= Well-Typed

The Haskell Consultants

About Well-Typed

» Well-Typed is a Haskell consultancy company, established in 2008
» Team of about 20 Haskell experts

» Wide variety of clients

» GHC and tooling maintenance, development and support
» Haskell software development and consulting

» On-site and remote training courses

= Well-Typed

GHC support and maintenance

https://well-typed.com/blog/2022/11/funding-ghc-maintenance/

= Well-Typed

https://well-typed.com/blog/2022/11/funding-ghc-maintenance/

v

Using Haskell since about 1997

v

Studied mathematics in Konstanz, PhD in Computer Science at
Utrecht 2004

At Well-Typed since 2010

» Living in Regensburg, Germany

v

= Well-Typed

Haskell Interlude

https://haskell.foundation/podcast/

= Well-Typed

https://haskell.foundation/podcast/

Haskell Unfolder

The Haskell Unfolder

https://www.youtube.com/@well-typed

Next episode on Wednesday, 14 June, on a topic related to this talk!

= Well-Typed

https://www.youtube.com/@well-typed

This presentation and the code samples are available from

https://github.com/well-typed/lazy-evaluation-zurihac-2023

= Well-Typed

https://github.com/well-typed/lazy-evaluation-zurihac-2023

» Look at lazy evaluation and try to reason about simple programs.
» Build an intuition for lazy evaluation.

» Discuss some common pitfalls.

= Well-Typed

» Look at lazy evaluation and try to reason about simple programs.
» Build an intuition for lazy evaluation.

» Discuss some common pitfalls.

Not:

» Complete in any sense.
» Dive deep into GHC-specific optimisations.

» Learn how to track down space leaks in large code bases.

= Well-Typed

Informal introduction

Lazy evaluation

What is lazy evaluation?

= Well-Typed

Lazy evaluation

What is lazy evaluation?

» evaluate as little as possible, just when needed, and ...

= Well-Typed

Lazy evaluation

What is lazy evaluation?

» evaluate as little as possible, just when needed, and ...

» share computation results if they are needed multiple times.

= Well-Typed

Lazy evaluation

What is lazy evaluation?

» evaluate as little as possible, just when needed, and ...

» share computation results if they are needed multiple times.

What is a space leak?

= Well-Typed

Lazy evaluation

What is lazy evaluation?

» evaluate as little as possible, just when needed, and ...

» share computation results if they are needed multiple times.
What is a space leak?

A situation where memory is retained by the program unexpectedly
long.

= Well-Typed

Lazy evaluation

Why do we evaluate anything at all?

= Well-Typed

Lazy evaluation

Why do we evaluate anything at all?

» Some result we are interested in creates demand on other results.

» Demand is propagated through functions and language
constructs such as case (or more generally pattern matching).

= Well-Typed

Lazy evaluation

Why do we evaluate anything at all?

» Some result we are interested in creates demand on other results.

» Demand is propagated through functions and language
constructs such as case (or more generally pattern matching).

We will try to make these points more precise throughout the lecture.

= Well-Typed

Example 1: null

A first example

examplel :: Int -> Bool
examplel n = null [0 .. n]

How much space does this use (in terms of n)?

= Well-Typed

Looking at definitions

Let's start with our own definitions.
null :: [al -> Bool
null [] = True
null (_ : _) = False

= Well-Typed

Looking at definitions

Let's start with our own definitions.
null :: [al -> Bool
null [] = True
null (_ : _) = False

enumFromTo :: Int -> Int -> [Int]
enumFromTo 1 u =
if1>u
then []
else 1 : enumFromTo (1 + 1) u

In Haskell, [m .. n] issyntactic sugar for enumFromTo m n .

= Well-Typed

Equational reasoning

Let'sassume n = 2 :
null (enumFromTo @ 2)

= Well-Typed

Equational reasoning

Let'sassume n = 2 :
null denumFromTo 0 2)

= Well-Typed

Equational reasoning

Let'sassume n = 2 :
null (enumFromTo @ 2)
= null (if @ > 2 then [] else 0 : enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

Let'sassume n = 2 :
null (enumFromTo @ 2)
= null (if[@>2] then [] else 0 : enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

Let'sassume n = 2 :

null (enumFromTo @ 2)
= null (if @ > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

Let'sassume n = 2 :

null (enumFromTo @ 2)
= null (if @ > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

Let'sassume n = 2 :

null (enumFromTo @ 2)
= null (if @ > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (@ : enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

Let'sassume n = 2 :

null (enumFromTo @ 2)
= null (if @ > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
=|null (0 : enumFromTo (0 + 1) 2)|

= Well-Typed

Equational reasoning

Let'sassume n = 2 :

null (enumFromTo @ 2)
= null (if @ > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (@ : enumFromTo (0 + 1) 2)
= False

= Well-Typed

Equational reasoning

Let'sassume n = 2 :

null (enumFromTo @ 2)
= null (if @ > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (@ : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
onlyon 0 > n being False .

= Well-Typed

Equational reasoning

Let'sassume n = 2 :

null (enumFromTo @ 2)
= null (if @ > 2 then [] else 0 : enumFromTo (0 + 1) 2)
= null (if False then [] else 0 : enumFromTo (0 + 1) 2)
= null (@ : enumFromTo (0 + 1) 2)
= False

Reduction sequence does not depend on n ,
onlyon 0 > n being False .

Answer to our original question is constant space (and time).

= Well-Typed

null (0 : enumFromTo (0 + 1) 2)

= Well-Typed

null (0 : enumFromTo|(@ + 1)]|2)

= Well-Typed

null (0 :|enumFromTo (0 + 1) 2)

= Well-Typed

[null (0 : enumFromTo (0 + 1) 2)|

= Well-Typed

null (0 : enumFromTo (0 + 1) 2)

We generally have more than one redex (reducible expression).

One aspect of lazy evaluation is that we are generally choosing the
outermost redex.

= Well-Typed

Lightweight measuring

» Write the program.

» Run with different inputs (for n) and observe memory
consumption.

» Use GHC RTS flags to get helpful info about memory use.

= Well-Typed

Why does anything happen at all?

= Well-Typed

Why does anything happen at all?

» We want to print the resulting Bool .

= Well-Typed

Why does anything happen at all?

» We want to print the resulting Bool .

» In order to print it, we have to know it.

= Well-Typed

Why does anything happen at all?

» We want to print the resulting Bool .
» In order to print it, we have to know it.

» So we have to evaluate the call to null .

= Well-Typed

Why does anything happen at all?

» We want to print the resulting Bool .
» In order to print it, we have to know it.
» So we have to evaluate the call to null .

» Why can't we reduce null (enumFromTo 0 2) directly?

= Well-Typed

Pattern matching

null :: [a] -> Bool
null [] True
null (_ : _) = False

The pattern match on the input drives evaluation, i.e., it propagates
demand.

= Well-Typed

Just enough evaluation

As can be observed by the reduction

null (@ : enumFromTo (@ + 1) 2)
= False

revealing the top-level constructor is sufficient to reduce null .

= Well-Typed

Just enough evaluation

As can be observed by the reduction

null (@ : enumFromTo (@ + 1) 2)
= False

revealing the top-level constructor is sufficient to reduce null .

An expression is in weak head-normal form (WHNF) if it is a
constructor application (or a lambda).

= Well-Typed

Just enough evaluation

As can be observed by the reduction

null (@ : enumFromTo (@ + 1) 2)
= False

revealing the top-level constructor is sufficient to reduce null .

An expression is in weak head-normal form (WHNF) if it is a
constructor application (or a lambda).

Intuitively, if any evaluation is needed at all, then evaluating up to weak
head-normal form is the least amount of evaluation that can enable
new reduction opportunities.

= Well-Typed

How much evaluation?

So what about each of the following?
null (repeat 1)

null undefined

null (1 : undefined)

null (undefined : undefined)

null (let x = x in x)

= Well-Typed

Aside: strict functions

Afunction f iscalledstrictifandonlyif f 1 = 1 .

(Here, L is a special value that subsumes anything that crashes or
loops, e.g. undefined .)

= Well-Typed

Aside: strict functions

Afunction f iscalledstrictifandonlyif f 1 = 1 .

(Here, L is a special value that subsumes anything that crashes or
loops, e.g. undefined .)

Good:

Strictness is defined in terms of a function’s behaviour, not its
implementation.

= Well-Typed

Aside: strict functions

Afunction f iscalledstrictifandonlyif f 1 = 1 .

(Here, L is a special value that subsumes anything that crashes or
loops, e.g. undefined .)

Good:

Strictness is defined in terms of a function’s behaviour, not its
implementation.

Not so good:
Some implications of the definition might be unintuitive.

The notion is not very precise, because there are “various degrees of
strictness”.

= Well-Typed

Is null strict?

= Well-Typed

Is null strict?

Yes!
GHCi> null undefined
% Exception: Prelude.undefined

= Well-Typed

What is an example of a non-strict function?

= Well-Typed

What is an example of a non-strict function?

constZero :: a -> Int
constZero _ =0

= Well-Typed

What is an example of a non-strict function?

constZero :: a -> Int
constZero _ =0

GHCi> constZero undefined
0

= Well-Typed

id :: a -> a
id x = x

Is id strict?

= Well-Typed

id :: a -> a

id x = x
Is id strict?
Yes!

GHCi> id undefined
*** Exception: Prelude.undefined

= Well-Typed

id :: a -> a

id x = x
Is id strict?
Yes!

GHCi> id undefined
*** Exception: Prelude.undefined

Note that id propagates demand on the result to demand on its
argument.

= Well-Typed

Another corner case

constError :: a->b
constError _ = undefined

This function is also strict.

= Well-Typed

Example 2: null via equality

Changed definition of [TEll

nullViaEq xs = xs == []

example2 :: Int -> Bool
example2 n = nullViaEq [0 .. n]

Does this change anything?

= Well-Typed

Definition of equality on lists

instance Eq a => Eq [a] where

L] == [] = True
(x : xs) == (y : ys) = x ==y && XS == ys
_XS == _ys = False

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)

= Well-Typed

Equational reasoning

InullViaEq (enumFromTo 0 2)|

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= lenumFromTo 0 2|== []

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []

= (if[2>_2] then [] else 0 : enumFromTo (0 + 1) 2) == []

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2p == []

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
=|(0 : enumFromTo (0 + 1) 2) == []|

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

= Well-Typed

Equational reasoning

nullViaEgq (enumFromTo 0 2)
= enumFromTo 0 2 == []
= (if 0 > 2 then [] else 0 : enumFromTo (0 + 1) 2) == []
= (if False then [] else 0 : enumFromTo (0 + 1) 2) == []
= (0 : enumFromTo (0 + 1) 2) == []
= False

Reduction steps change, but still independent of n .

Still constant space (and time).

= Well-Typed

Aside: which definition is better?

Which of the two definitions of null is better?

= Well-Typed

Aside: which definition is better?

Which of the two definitions of null is better?

The function nullViaEq has an unnecessarily restrictive type:

nullViaEq :: Eq a => [a] -> Bool

= Well-Typed

Example 3: self equality

Comparing a list to itself

selfEqual :: Eq a => a -> Bool
selfEqual x = x == x

example3 :: Int -> Bool
example3 n = selfEqual [0 .. n]

We are once again interested in the space behaviour.

= Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= Well-Typed

Equational reasoning

This is where sharing comes into play:
|selfEqual (enumFromTo 0 2)|

= Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == X

= Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x =|enumFromTo @ 2}in x == x

= Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x = enumFromTo 0 2 in x == X

= let x = 0 : enumFromTo (@ + 1) 2 in x == X

= Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x
= let x

enumFromTo 0 2 in x == x

0 : enumFromTo (0 + 1) 2 in x == X

= let x =0 : x'; x'" = enumFromTo (0 + 1) 2 in x == X

= Well-Typed

Equational reasoning

This is where sharing comes into play:
selfEqual (enumFromTo 0 2)

= let x
= let x
= let x =0 : x'; x" = enumFromTo (0 + 1) 2 in[X==_X]

enumFromTo 0 2 in x == x

0 : enumFromTo (0 + 1) 2 in x == X

= Well-Typed

Equational reasoning

This is where sharing comes into play:

selfEqual (enumFromTo 0 2)

let x = enumFromTo 0 2 in x == x

let x = 0 : enumFromTo (0 + 1) 2 in x ==

let x =0 : x'; x'" = enumFromTo (0 + 1) 2 in X == X
let x =0 : x"; x'" = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'

= Well-Typed

Equational reasoning

This is where sharing comes into play:

selfEqual (enumFromTo 0 2)

let x = enumFromTo 0 2 in x == x

let x = 0 : enumFromTo (0 + 1) 2 in x ==

let x =0 : x'; x'" = enumFromTo (0 + 1) 2 in X == X
let x =0 : x"; x'" = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'

let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'

= Well-Typed

Equational reasoning

This is where sharing comes into play:

selfEqual (enumFromTo 0 2)

let x = enumFromTo 0 2 in x == x

let x = 0 : enumFromTo (0 + 1) 2 in x ==

let x =0 : x'; x'" = enumFromTo (0 + 1) 2 in X == X
let x =0 : x"; x'" = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'

let x' = enumFromTo (0 + 1) 2 in|0 == 0]&& x' == x'

= Well-Typed

Equational reasoning

This is where sharing comes into play:

selfEqual (enumFromTo 0 2)

let x = enumFromTo 0 2 in x == x

let x = 0 : enumFromTo (0 + 1) 2 in x ==

let x =0 : x'; x'" = enumFromTo (0 + 1) 2 in X == X
let x =0 : x"; x'" = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'

let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
let x' = enumFromTo (@ + 1) 2 in True && x' == x'

= Well-Typed

Equational reasoning

This is where sharing comes into play:

selfEqual (enumFromTo 0 2)

let x = enumFromTo 0 2 in x == x

let x = 0 : enumFromTo (0 + 1) 2 in x ==

let x =0 : x'; x'" = enumFromTo (0 + 1) 2 in X == X
let x =0 : x"; x'" = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'

let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
let x' = enumFromTo (@ + 1) 2 in|True && x' == x'|

= Well-Typed

Equational reasoning

This is where sharing comes into play:

selfEqual (enumFromTo 0 2)

let x = enumFromTo 0 2 in x == x

let x = 0 : enumFromTo (0 + 1) 2 in x ==

let x =0 : x'; x'" = enumFromTo (0 + 1) 2 in X == X
let x =0 : x"; x'" = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'

let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
let x' = enumFromTo (@ + 1) 2 in True && x' == x'
let x' = enumFromTo (0 + 1) 2 in x' ==

= Well-Typed

Equational reasoning

This is where sharing comes into play:

selfEqual (enumFromTo 0 2)

let x = enumFromTo 0 2 in x == x

let x = 0 : enumFromTo (0 + 1) 2 in x ==

let x =0 : x'; x'" = enumFromTo (0 + 1) 2 in X == X
let x =0 : x"; x'" = enumFromTo (0 + 1) 2

in 0 == 0 && x' == x'

let x' = enumFromTo (0 + 1) 2 in 0 == 0 && x' == x'
let x' = enumFromTo (@ + 1) 2 in True && x' == x'
let x' = enumFromTo (0 + 1) 2 in x' ==

True

Linear time, but constant space.

= Well-Typed

Top-level sharing

A somewhat special case is sharing introduced at the top-level.
fib :: Int -> Int

fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)

expensive :: Int
expensive = fib 32

= Well-Typed

Top-level sharing

A somewhat special case is sharing introduced at the top-level.
fib :: Int -> Int

fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)

expensive :: Int
expensive = fib 32

Sometimes referred to as CAF (constant applicative form).

= Well-Typed

Top-level sharing

A somewhat special case is sharing introduced at the top-level.
fib :: Int -> Int

fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)

expensive :: Int
expensive = fib 32

Sometimes referred to as CAF (constant applicative form).

Can be immensely useful, but the lifetime of such an expression is
potentially the entire run of the program.

= Well-Typed

Lightweight inspection

GHCi> x = [0 .. 2] :: [Int]
GHCi> :sprint x

X = _

GHCi> null x

False

GHCi> :sprint x

X =0 :

There is also :print which shows slightly more information.

= Well-Typed

Lightweight inspection

GHCi> x = [0 .. 2] :: [Int]
GHCi> :sprint x

X =
GHCi> null x
False

GHCi> :sprint x
X =0 :

There is also :print which shows slightly more information.

Neither command works with cyclic structures. There are other tools
such as ghc-heap-view or ghc-debug that are needed for inspecting
those.

= Well-Typed

Example 4: map vs. reverse

Building a pipeline

exampleda :: Int -> Bool
example4a n = null (map (<= 10) [0 .. n])

The new aspect compared to earlier examples is the addition of map
in the middle of the pipeline - does it change anything?

= Well-Typed

Definition of

map :: (a -> b) -> [a] -> [b]
map _ [] =[]
map f (x : xs) = f x : map f xs

= Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))

= Well-Typed

Equational reasoning

null (map (<= 10)[(enumFromTo 0 2))

= Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))

= Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null [(map (<= 10) (@ : enumFromTo (0 + 1) 2))|

= Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
=|[null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)|

= Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

= Well-Typed

Equational reasoning

null (map (<= 10) (enumFromTo 0 2))
= null (map (<= 10) (0 : enumFromTo (0 + 1) 2))
= null ((0 <= 10) : map (<= 10) enumFromTo (0 + 1) 2)
= False

Still constant space (and time).

= Well-Typed

Adding a different function

exampledb :: Int -> Bool
exampledb n = null (reverse [0 .. n])

= Well-Typed

Definition of IENEIEE

reverse :: [a] -> [a]

reverse = reverseAcc []

reverseAcc :: [a] -> [a] -> [a]

reverseAcc acc [] = acc

reverseAcc acc (x : xs) = reverseAcc (X : acc) xs

= Well-Typed

Equational reasoning

null (reverse (enumFromTo 0 2))
= null (reverseAcc [] (enumFromTo @ 2))
null (reverseAcc [] (0 : enumFromTo (0 + 1) 2))
= null (reverseAcc (0 : []) (enumFromTo (0 + 1) 2))

= Well-Typed

Equational reasoning

null

= null

null
null
null
null
null
null
null
null

= False

(reverse (enumFromTo 0 2))
(reverseAcc [] (enumFromTo @ 2))

(reverseAcc
(reverseAcc
(reverseAcc
(reverseAcc
(reverseAcc
(reverseAcc
(reverseAcc

(2:1:0:

[1<(

0 :
(0 :
a
(1
2 :
2 :
D)

: enumFromTo (0 + 1) 2))
[1) (enumFromTo (0 + 1) 2))
[1) (1 : enumFromTo (1 + 1) 2))
0 : [1) (enumFromTo (1 + 1) 2))

0 : [1) (enumFromTo (2 + 1) 2))
0 [DID

0 : [1) (2 : enumFromTo (2 + 1) 2))
1
1

= Well-Typed

Equational reasoning

null
= null
null
null
null
null
null
= null
= null
= null
= False

(reverse (enumFromTo 0 2))
(reverseAcc [] (enumFromTo @ 2))

(reverseAcc
(reverseAcc
(reverseAcc
(reverseAcc
(reverseAcc
(reverseAcc
(reverseAcc

(2:1:0:

[1<(

0 :
(0 :
a
(1
2 :
2 :
D)

: enumFromTo (0 + 1) 2))
[1) (enumFromTo (0 + 1) 2))
[1) (1 : enumFromTo (1 + 1) 2))
0 : [1) (enumFromTo (1 + 1) 2))

0 : [1) (enumFromTo (2 + 1) 2))
0 [DID

0 : [1) (2 : enumFromTo (2 + 1) 2))
1
1

This operates in linear space (and time).

= Well-Typed

Comparing Elalell reverse

What is the key difference between map and reverse ?

= Well-Typed

Comparing Elalell reverse

What is the key difference between map and reverse ?

The function map is incremental, while reverse is not.

= Well-Typed

Comparing Elalell reverse

What is the key difference between map and reverse ?
The function map is incremental, while reverse is not.

More precisely:

» for map , we only need to evaluate the input list as far as we want
to evaluate the output list.

» for reverse , even for just evaluating the result list to WHNF, we
have to evaluate the entire spine of the input list.

= Well-Typed

Comparing Elalell reverse

What is the key difference between map and reverse ?
The function map is incremental, while reverse is not.

More precisely:

» for map , we only need to evaluate the input list as far as we want
to evaluate the output list.

» for reverse , even for just evaluating the result list to WHNF, we
have to evaluate the entire spine of the input list.

Incrementality is not precisely defined, but | am calling functions
incremental that can produce (parts of) their output without evaluating
all of their input.

= Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f
reverse

= Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f

reverse

filter p

= Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f

reverse

filter p

length

= Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f

reverse

filter p

length

sum

= Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f

reverse

filter p

length

sum

and

= Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f

reverse

filter p

length

sum

and

take n

= Well-Typed

Incrementality

Which of the following functions are (or should be) incremental?
map f

reverse

filter p

length

sum

and

take n

drop n

= Well-Typed

Example 5: length

Changing the definition of [¥ll] once more

nullVialLength :: [a] -> Bool
nullViaLength xs = length xs ==

exampleba :: Int -> Bool
exampleb5a n = nullVialength [0 .. n]

How does this compare to the other definitions of null ?

= Well-Typed

A simpler example

Letus justlook at length itself

examplebb :: Int -> Int
examplebb n = length [0 .. n]

What is the space behaviour?

= Well-Typed

Definition(s) of kIgfzady!

A (naive) definition of length is bad:

length :: [a] -> Int

length []
length (_ : xs)

0
1 + length xs

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)
= 1 + length (1 : enumFromTo (1 + 1) 2)
=1+ (1 + (length (enumFromTo (1 + 1) 2)))

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)
= 1 + length (1 : enumFromTo (1 + 1) 2)
=1+ (1 + (length (enumFromTo (1 + 1) 2)))

=1+0+@0+0))

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= length (0 : enumFromTo (0 + 1) 2)
= 1 + length (enumFromTo (0 + 1) 2)
= 1 + length (1 : enumFromTo (1 + 1) 2)
=1+ (1 + (length (enumFromTo (1 + 1) 2)))

=1+0+@0+0))

=3

Runs in linear space.

= Well-Typed

Definition(s) of kIgfzady!

An accumulating definition of length is potentially not much better:
length :: [a] -> Int

length = lengthAcc 0

lengthAcc :: Int -> [a] -> Int

lengthAcc acc [] = acc

lengthAcc acc (_ : xs) = lengthAcc (1 + acc) xs

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + @) (enumFromTo (@ + 1) 2)

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + @) (enumFromTo (@ + 1) 2)
= lengthAcc (1 + 0) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + @) (enumFromTo (@ + 1) 2)
lengthAcc (1 + @) (1 : enumFromTo (1 + 1) 2)
= lengthAcc (1 + (1 + 0)) (enumFromTo (1 + 1) 2)

= lengthAcc (1 + (1 + (1 +0))) []
T+ 0+ +0))

=3

Also runs in linear space.

= Well-Typed

Definition(s) of kIgfzady!

We can fix the problem by artifically making lengthAcc more strict:
length :: [a] -> Int

length = lengthAcc 0

lengthAcc :: Int -> [a] -> Int

lengthAcc lacc [] = acc

lengthAcc lacc (_ : xs) = lengthAcc (1 + acc) xs

= Well-Typed

Definition(s) of kIgfzady!

We can fix the problem by artifically making lengthAcc more strict:
length :: [a] -> Int
length = lengthAcc 0

lengthAcc :: Int -> [a] -> Int
lengthAcc lacc [] = acc
lengthAcc lacc (_ : xs) = lengthAcc (1 + acc) xs

A bang pattern match will force the argument into WHNF, just as if it
was a constructor match

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)

= lengthAcc (enumFromTo (@ + 1) 2)

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc 1 (enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc 1 (enumFromTo (0 + 1) 2)
= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)

= Well-Typed

Equational reasoning

length (enumFromTo 0 2)
= lengthAcc 0 (enumFromTo 0 2)
= lengthAcc 0 (0 : enumFromTo (0 + 1) 2)
= lengthAcc (1 + 0) (enumFromTo (0 + 1) 2)
= lengthAcc 1 (enumFromTo (0 + 1) 2)
= lengthAcc 1 (1 : enumFromTo (1 + 1) 2)
= lengthAcc 2 (2 : enumFromTo (2 + 1) 2)
= lengthAcc 3 []
= g

Now runs in constant space (but still linear time).

= Well-Typed

Aside: more on bang patterns

Note: bang patterns only ever make sense on variables.

(Why?)

= Well-Typed

Aside:

Historically, Haskell has had seq to control evaluation.

It is primitive, but you could define it in terms of bang patterns:
seq ::a->b->b
seql_y =y

= Well-Typed

Aside:

Historically, Haskell has had seq to control evaluation.

It is primitive, but you could define it in terms of bang patterns:
seq ::a->b->b
seql_y =y

lengthAcc :: Int -> [a] -> Int
lengthAcc acc [] = acc
lengthAcc acc (_ : xs) = seq acc (lengthAcc (1 + acc) xs)

= Well-Typed

Question about

Why not

force :: a -> a

force x = seq x x

lengthAcc :: Int -> [a] -> Int

lengthAcc acc [] = acc

lengthAcc acc (_ : xs) = lengthAcc (force (1 + acc)) xs

= Well-Typed

Question about

Why not

force :: a -> a

force x = seq x x

lengthAcc :: Int -> [a] -> Int

lengthAcc acc [] = acc

lengthAcc acc (_ : xs) = lengthAcc (force (1 + acc)) xs

force isjust id . It does not create any demand that does not
already exist.

= Well-Typed

Demand analysis

With optimisations on, GHC will detect that the original accumulating
version of length will always eventually use the accumulator and
make it strict even without bang pattern.

= Well-Typed

Yet another definition of Ekelgfada

length :: [a] -> Int

length = lengthAcc 0

lengthAcc :: Int -> [a] -> Int

lengthAcc _ [=0

lengthAcc acc [_] 1 + acc

lengthAcc acc (_ : xs) = lengthAcc (1 + acc) xs

This version does not always use acc , and therefore will not be
optimised to use a strict accumulator.

= Well-Typed

Returning to our initial example

nullVialLength :: [a] -> Bool
nullViaLength xs = length xs ==

exampleba :: Int -> Bool
example5a n = nullVialLength [0 .. n]

= Well-Typed

Returning to our initial example

nullVialLength :: [a] -> Bool
nullViaLength xs = length xs ==

exampleba :: Int -> Bool
example5a n = nullVialLength [0 .. n]

Constant space, but linear time, and therefore unsuitable as a
definition of null .

= Well-Typed

Another variant

if nullvialLength xs
then ...
else ... sum xs ...

= Well-Typed

Another variant

if nullvialLength xs
then ...
else ... sum xs ...

Sharing can turn something that just looks unnecessarily inefficient
into a space leak.

= Well-Typed

Example 6: unfair partitioning

Partitioning a list

example6 :: Int -> (Int, Int)
example6 n =
case partition (>=0) [0 .. n] of
(xs, ys) -> (sum xs, sum ys)

(Think of (>= 0) as some kind of sanity check.)

= Well-Typed

vefining [EEIRERE

partition :: (a -> Bool) -> [a] -> ([al, [al)
partition _ [] (C1, [D
partition p (x : xs) =
case partition p xs of
(ys, zs)
| p x -> (X :ys, zs)
| otherwise -> (ys, x : zs)

Is this a good definition?

= Well-Typed

Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>=0) (0 : enumFromTo (0 + 1) 2)
= case partition (>= 0) (enumFromTo (0 + 1) 2) of
(ys, zs)
| =0)0 -> (0 :ys, zs)
| otherwise -> (ys, 0 : zs)

= Well-Typed

Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>=0) (0 : enumFromTo (0 + 1) 2)
= case partition (>= 0) (enumFromTo (0 + 1) 2) of
(ys, zs)
| =0)0 -> (0 :ys, zs)
| otherwise -> (ys, 0 : zs)

= case (case partition (>= 0) (enumFromTo (1 + 1) 2) of
(ys', zs')
| >=0)1 -> (1 :ys, zs)
| otherwise -> (ys, 1 : zs)
) of
(ys, zs)
| &>=0)0 -> (0 :ys, zs)
| otherwise -> (ys, 0 : zs)

Ohno...

= Well-Typed

Irrefutable pattern matches

We know the result of partition will be a pair, so why wait?
partition :: (a -> Bool) -> [a] -> ([al, [al)
partition _ [] = ([1, [D
partition p (x : xs) =
case partition p xs of
~(ys, zs)
| p x -> (X :ys, zs)
| otherwise -> (ys, x : zs)

An irrefutable match will always succeed. You can think of it as being
rewritten to using selectors.

= Well-Typed

An equivalent but uglier definition of

partition :: (a -> Bool) -> [a] -> ([al, [al)
partition _ [1 = ([]1, [D)
partition p (x : xs) =
let r = partition p xs
in if p x
then (x : fst r, snd r)
else (fst r, x : snd r)

= Well-Typed

Aside: irrefutable patterns

Why are irrefutable patterns so rare?

= Well-Typed

Aside: irrefutable patterns

Why are irrefutable patterns so rare?

Because let pattern matches are implicitly irrefutable.

= Well-Typed

Aside: irrefutable patterns

Why are irrefutable patterns so rare?
Because let pattern matches are implicitly irrefutable.

Can you think of other functions that morally require an
irrefutable pattern match?

= Well-Typed

Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in if G=0)0
then (0 : fst r, snd r)
else (fst r, 0 : snd r)

= Well-Typed

Equational reasoning

partition (>= 0) (enumFromTo (0 .. 2))
= partition (>= 0) (0 : enumFromTo (0 + 1) 2)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in if G=0)0
then (0 : fst r, snd r)
else (fst r, 0 : snd r)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fstr, snd r)

This is better. We already have quite a bit of information at this point - in
particular, the result is now in WHNF!

= Well-Typed

Equational reasoning

Let's assume we place more demand on the first component of the result
pair,i.e.,on fst r :

let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fstr, sndr)

= Well-Typed

Equational reasoning

Let's assume we place more demand on the first component of the result
pair,i.e.,on fst r :
let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fstr, sndr)
= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (1 : fstr',sndr'")
in (0 : fstr, snd r)

= Well-Typed

Equational reasoning

Let's assume we place more demand on the first component of the result
pair,i.e.,on fst r :

let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fstr, sndr)
= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (1 : fstr',sndr'")
in (0 : fstr, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r =(: fstr',sndr')
in (0 : fstr, snd r)

= Well-Typed

Equational reasoning

Let's assume we place more demand on the first component of the result
pair,i.e.,on fst r :

let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fstr, sndr)
= let r = let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (1 : fstr',sndr'")
in (0 : fstr, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r =(: fstr',sndr')
in (0 : fstr, snd r)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r (1 : fstr',sndr'")
in (0 : 1 : fstr', sndr)

Isn't there still a problem here?

= Well-Typed

Selector thunk optimisation

let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
r (1 : fstr',sndr")
in (0 : 1 : fstr', sndr)
= let r' = partition (>= 0) (enumFromTo (1 + 1) 2)
in (0 :1: fstr',sndr'")

The garbage collector will reduce selector thunks if possible, even if there's
no explicit demand on them.

= Well-Typed

Revisiting the example

example6 :: Int -> (Int, Int)
example6 n =
case partition (>= 0) [0 .. n] of
(xs, ys) -> (sum Xs, sum ys)

= Well-Typed

Equational reasoning

case partition (>= 0) (enumFromTo 0 2) of
(xs, ys) —-> (sum xs, sum ys)

= Well-Typed

Equational reasoning

case partition (>= 0) (enumFromTo 0 2) of
(xs, ys) —-> (sum xs, sum ys)
= case (let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of
(Xxs, ys) —> (sum Xxs, sum ys)

= Well-Typed

Equational reasoning

case partition (>= 0) (enumFromTo 0 2) of
(xs, ys) —-> (sum xs, sum ys)
= case (let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (0 : fst r, snd r)) of
(Xxs, ys) —> (sum Xxs, sum ys)
= let r = partition (>= 0) (enumFromTo (0 + 1) 2)
in (sum (0 : fst r), sum (snd r))

This is in WHNF. Will it be ok if we proceed placing demand on it, e.g. by
printing the result?

= Well-Typed

Example 7: fair partitioning

A variant of our previous example

example7a :: Int -> (Int, Int)
example7a n =
case partition even [0 .. n] of
(xs, ys) —> (sum xs, sum ys)

The only difference is that we are using even instead of (>= 0) .

= Well-Typed

Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) —-> (sum xs, sum ys)

= Well-Typed

Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) —-> (sum xs, sum ys)
= case (let r = partition even (enumFromTo (0 + 1) 2)
in (0 : fstr, snd r)) of
(xs, ys) —> (sum Xxs, sum ys)

= Well-Typed

Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) —> (sum xs, sum ys)
= case (let r = partition even (enumFromTo (0 + 1) 2)
in (0 : fstr, snd r)) of
(xs, ys) —> (sum Xxs, sum ys)
= let r = partition even (enumFromTo (0 + 1) 2)
in (sum (0 : fst r), sum (snd r))

= Well-Typed

Equational reasoning

case partition even (enumFromTo 0 2) of
(xs, ys) —-> (sum xs, sum ys)
case (let r = partition even (enumFromTo (0 + 1) 2)
in (0 : fstr, snd r)) of
(xs, ys) —> (sum Xxs, sum ys)

let r = partition even (enumFromTo (0 + 1) 2)
in (sum (0 : fst r), sum (snd r))
let r = partition even (enumFromTo (1 + 1) 2)

in (sumAcc 0 (fst r), sum (1 : snd r))

While we are evaluating the first component of the pair, the second
component grows larger ...

= Well-Typed

The problematic pattern here is that we are generating

([Int], [Int])

but the generation of the two lists is not independent, and the
distribution is not statically known.

= Well-Typed

The problematic pattern here is that we are generating

([Int], [Int])

but the generation of the two lists is not independent, and the
distribution is not statically known.

partitionEvenSums :: [Int] -> (Int, Int)
partitionEvenSums = partitionEvenSumsAcc (0, 0)

partitionEvenSumsAcc :: (Int, Int) -> [Int] -> (Int, Int)
partitionEvenSumsAcc (!x, ly) [] = (X, y)
partitionEvenSumsAcc (!x, !ly) (z : zs) =
if even z then partitionEvenSumsAcc (x + z, y) zs
else partitionEvenSumsAcc (x, y + z) zs

= Well-Typed

Revisiting the example

example7b :: Int -> (Int, Int)
example7b n = partitionEvenSums [0 .. n]

This works in constant space (but is less modular).

= Well-Typed

Revisiting the example

example7b :: Int -> (Int, Int)
example7b n = partitionEvenSums [0 .. n]

This works in constant space (but is less modular).

Libraries such as foldl or streamly can help restore modularity here.

= Well-Typed

data Writer w a = Writer w a

A similar problem arises here as we have seen for partitioning. For
Writer ,itis typically even worse because monadic computations will
often run for a very long time.

= Well-Typed

Example 8: effectful traversals

Traversing a list

example8a n = length <$> traverse pure [0 .. n]

= Well-Typed

Traversing a list

example8a n = length <$> traverse pure [0 .. n]

Definition of traverse on lists:

traverse :: Applicative f => (a -=> f b) -> [a] -> f [b]
traverse _ [] pure []
traverse f (x : xs) = pure (:) <*> f x <#> traverse f xs

= Well-Typed

What applicative functor?

Does the choice of applicative functor matter?

= Well-Typed

What applicative functor?

Does the choice of applicative functor matter?

What about each of

» Identity
» Maybe
» 10

= Well-Typed

example8a :: Int -> Identity Int
newtype Identity a = Identity {runldentity :: a}

instance Functor Identity where
fmap f x = pure f <*> x
instance Applicative Identity where
pure = Identity
f <*x> x = Identity ((runldentity f) (runIdentity x))

= Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
<x> traverse pure (enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity (runldentity (pure (:)) <*> runIdentity (pure 0))
<*> traverse pure (enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)

= traverse pure (0 : enumFromTo (0 + 1) 2)

= pure (:) <*> pure 0
<x> traverse pure (enumFromTo (0 + 1) 2)

= Identity (runldentity (pure (:)) <*> runIdentity (pure 0))
<*> traverse pure (enumFromTo (0 + 1) 2)

= Identity ((:) 0)
<x> traverse pure (enumFromTo (0 + 1) 2)

= Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
<x> traverse pure (enumFromTo (0 + 1) 2)
= Identity (runldentity (pure (:)) <*> runIdentity (pure 0))
<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity ((:) 0)
<*> traverse pure (enumFromTo (0 + 1) 2)
= Identity
(0 : runldentity (traverse pure (enumFromTo (@ + 1) 2)))

This looks fine (and it is).

Runs in constant space.

= Well-Typed

example8b :: Int -> Maybe Int
data Maybe a = Nothing | Just a

instance Functor Maybe where
fmap f x = pure f <*> x

instance Applicative Maybe where
pure = Just
Nothing <*> _ Nothing
Just _ <*> Nothing = Nothing
Just f <*> Just x Just (f x)

= Well-Typed

Equational reasoning

traverse pure (enumFromTo 0 2)
= traverse pure (0 : enumFromTo (0 + 1) 2)
= pure (:) <*> pure 0
<*> traverse pure (enumFromTo (0 + 1) 2)
= Just (:) <*> Just 0
<*> traverse pure (enumFromTo (0 + 1) 2)
= Just ((:) @) <*> traverse pure (enumFromTo (0 + 1) 2)

This is looking bad.

Runs in linear space.

= Well-Typed

A possible fix

traverselLength :: [a] -> Maybe Int
traverselLength = traverselLengthAcc 0
traverselLengthAcc :: Int -> [a] -> Maybe Int
traverselLengthAcc 'acc [] = Just acc
traverselLengthAcc 'acc (x : xs) =

pure x *> traverselLengthAcc (1 + acc) xs

= Well-Typed

Conclusions

	Informal introduction
	Example 1: null
	Example 2: null via equality
	Example 3: self equality
	Example 4: map vs. reverse
	Example 5: length
	Example 6: unfair partitioning
	Example 7: fair partitioning
	Example 8: effectful traversals
	Conclusions

