
GHC’s Runtime System
Ben Gamari — ben@well-typed.com

Well-Typed

Overview

▶ Review of RTS’s responsibilities
▶ Heap structure
▶ Storage manager

▶ Block allocator
▶ Garbage collector

▶ Concurrency
▶ Bytecode interpreter
▶ Linking
▶ Debugging techniques

Well-Typed

The Big Picture

GHC Overview

HsGroup GhcRn

HsGroup GhcPs

HsGroup GhcTc

ModGuts/Core

ModGuts/Core

Stg

Stg

Stg

[CmmDecl]

[Instruction]

BCO JS Source

LLVM IR C source
Core-to-Core

Pipeline

Parser

Renamer

Typechecker

Desugar

Core-to-STG

STG-to-STG
Pipeline

STG-to-Cmm
("codegen")

Parser

STG-to-
Bytecode

STG-to-
JavaScript

Cmm-to-Cmm
Pipeline

Cmm-to-Asm

Object Code

RTS Bytecode
Interpreter

Object Code

Cmm-to-CCmm-to-LLVM

Assembler
LLVM pipeline
llc / opt cc

Object Code

Legend

Compilation
Pass

RTS
Subsystem

Compilation
Product

External tool

Covered in
Workshop

Well-Typed

The Runtime System

Operating System

Linker

m32
alloc.

Block allocator

Megablock Allocator

Nonmoving
GC

SchedulerEventlogPrimops

Copying
GC

Compacting
GC

Mutator
Bytecode Interpreter

Mutator

▶ Provides a multitude of services:
▶ Allocation, garbage collection
▶ Green threads, sparks
▶ Various types and primops: StableName#, StaticPtr#, MVar#
▶ WeakPtr# and finalization
▶ Dynamic code loading
▶ Bytecode interpreter
▶ Exceptions & stack unwinding
▶ STM, . . . Well-Typed

The GHC/Haskell Execution Model

Abstract machine
A refinement of the STG Machine from [7].

R1
R2

R6

F1
F2

F6

D1
D2

D6

General-
Purpose
Registers

CCCS

Special
Registers

(for profiler)

CurrentTSO

(stack pointer)

(stack limit)

Stack

Heap

Well-Typed

The Stack

Stack usage

▶ Excess argument passing
▶ Excess result passing
▶ Continuation tracking
▶ Tracking thunk updates
▶ Exception handling

Well-Typed

Abstract machine (stack representation)
A refinement of the STG Machine from [7].

R1
R2

R6

F1
F2

F6

D1
D2

D6

General-
Purpose
Registers

CCCS

Special
Registers

(for profiler)

CurrentTSO

(stack pointer)

(stack limit)

Sp
SpLim

Stack
Registers

stg_STACK_info

frame 1

frame 2

underflow_frame

stg_STACK_info
frame n

frame n+1

Well-Typed

Example: Function calls and case analysis
foo = \a b ->
case f a of x { _ -> g x b }

Well-Typed

Example: Function calls and case analysis
foo = \a b ->
case f a of x { _ -> g x b }

caller of fooSp

Will be lowered to
foo() {
StgPtr a=R1, b=R2;

// Push return frame
Sp = Sp - 2;
Sp(0) = x_ret;
Sp(1) = b;
// Enter scrutinee
R1 = a;
call f;

}

x_ret() {
StgPtr x = R1;
StrPtr b = Sp(1)
Sp = Sp + 2;
R1 = x; R2 = b;
call g;

}

Well-Typed

Example: Function calls and case analysis
foo = \a b ->
case f a of x { _ -> g x b }

caller of foo

x_ret

b

Sp

Will be lowered to
foo() {
StgPtr a=R1, b=R2;

// Push return frame
Sp = Sp - 2;
Sp(0) = x_ret;
Sp(1) = b;
// Enter scrutinee
R1 = a;
call f;

}

x_ret() {
StgPtr x = R1;
StrPtr b = Sp(1)
Sp = Sp + 2;
R1 = x; R2 = b;
call g;

}

Well-Typed

Example: Function calls and case analysis
foo = \a b ->
case f a of x { _ -> g x b }

caller of fooSp

Will be lowered to
foo() {
StgPtr a=R1, b=R2;

// Push return frame
Sp = Sp - 2;
Sp(0) = x_ret;
Sp(1) = b;
// Enter scrutinee
R1 = a;
call f;

}

x_ret() {
StgPtr x = R1;
StrPtr b = Sp(1)
Sp = Sp + 2;
R1 = x; R2 = b;
call g;

}

Well-Typed

The Heap

Abstract machine (heap representation)
A refinement of the STG Machine from [7].

R1
R2

R6

F1
F2

F6

D1
D2

D6

General-
Purpose
Registers

CCCS

Special
Registers

(for profiler)

CurrentTSO

(stack pointer)

(stack limit)

Sp
SpLim

Stack
Registers

Hp
HpLim

Nursery

Well-Typed

Abstract machine (heap representation)
A refinement of the STG Machine from [7].

R1
R2

R6

F1
F2

F6

D1
D2

D6

General-
Purpose
Registers

CCCS

Special
Registers

(for profiler)

CurrentTSO

(stack pointer)

(stack limit)

Sp
SpLim

Stack
Registers

Hp
HpLim

Nursery

Well-Typed

Abstract machine (heap representation)
A refinement of the STG Machine from [7].

R1
R2

R6

F1
F2

F6

D1
D2

D6

General-
Purpose
Registers

CCCS

Special
Registers

(for profiler)

CurrentTSO

(stack pointer)

(stack limit)

Sp
SpLim

Stack
Registers

Hp
HpLim

Nursery

Well-Typed

Abstract machine (heap representation)
A refinement of the STG Machine from [7].

R1
R2

R6

F1
F2

F6

D1
D2

D6

General-
Purpose
Registers

CCCS

Special
Registers

(for profiler)

CurrentTSO

(stack pointer)

(stack limit)

Sp
SpLim

Stack
Registers

Hp
HpLim

Nursery

Well-Typed

Theme: Nearly everything is a heap object

▶ Threads (StgTSO)
▶ Stacks (StgStack)
▶ Messages (Message)
▶ Bytecode objects (StgBCO)
▶ STM transactions (StgTRecHeader, StgTVarWatchQueue)
▶ Compact regions (StgCompactNFData)

Well-Typed

Heap Objects (closures)
From rts/include/rts/storage/Closures.h:
// Closure
typedef struct StgClosure_ {

StgHeader header;
struct StgClosure_ *payload[];

} StgClosure;

// Closure header
typedef struct {

const StgInfoTable* info;
#if defined(PROFILING)

StgProfHeader prof;
#endif
} StgHeader;

Well-Typed

Heap Objects (closures)
From rts/include/rts/storage/Closures.h:
// Closure
typedef struct StgClosure_ {

StgHeader header;
struct StgClosure_ *payload[];

} StgClosure;

// Closure header
typedef struct {

const StgInfoTable* info;
#if defined(PROFILING)

StgProfHeader prof;
#endif
} StgHeader;

Well-Typed

Info Tables

The structure of a closure is described by its info table:
▶ closure type (e.g. constructor, Weak#, thunk, indirection)
▶ payload layout
▶ function arity
▶ entry code
▶ for thunks and functions: pointer to static reference table (SRT)

See definition of StgInfoTable in
rts/include/rts/storage/InfoTables.h.

Well-Typed

Entry Code: Naive model

closure_info

nptrs = ...
type = ...

ptrs = ...

entry code

closure_info

n

code =

Well-Typed

Entry Code: Tables-next-to-code

closure_info

nptrs = ...
type = ...

ptrs = ...

entry code

closure_info

n

Well-Typed

Heap Objects: Some Examples
let con = I# 42#

thnk = foo con
pair = (con, thnk)
sel = fst pair

in ...

42#42#

I#_info
con

I#_info

nptrs = 1
type = CONSTR

ptrs = 0

Well-Typed

Heap Objects: Some Examples
let con = I# 42#

thnk = foo con
pair = (con, thnk)
sel = fst pair

in ...

42#42#

I#_info
con

I#_info

nptrs = 1
type = CONSTR

ptrs = 0

42#
thnk_info

thnk

42#

thnk_info

nptrs = 0
type = THUNK

ptrs = 1

Well-Typed

Heap Objects: Some Examples
let con = I# 42#

thnk = foo con
pair = (con, thnk)
sel = fst pair

in ...

tuple2_info
pair

42#

42#

tuple2_info

nptrs = 0
type = CONSTR

ptrs = 2
thnk

con

Well-Typed

Heap Objects: Some Examples
let con = I# 42#

thnk = foo con
pair = (con, thnk)
sel = fst pair

in ...

42#
fst_info

sel
fst_info

nptrs = 0
type = SEL_TNK

ptrs = 1

sel offset = 0

tuple2_info
pair

42#

42#

tuple2_info

nptrs = 0
type = CONSTR

ptrs = 2
thnk

con

Well-Typed

Partial Applications
Consider an undersaturated function application:
ap :: (a -> b -> c) -> a -> (b -> c)
ap f x = f x

This will compile to
{
StgPtr f = R2;
StgPtr x = R3;
R2 = x;
R1 = f;
call stg_ap_p_fast(R2, R1)

args: 8, res: 0, upd: 8;
}

Well-Typed

Partial Applications

stg_ap_p_fast is an application function. These are generated for
various call patterns by utils/genapply.
This function will:
1. Inspect the closure type of the applied function
2. Determine whether the given number of arguments has

saturated the function
▶ If so, call the function
▶ If not, allocate a PAP closure

See _build/stage1/rts/build/cmm/AutoApply.cmm

Well-Typed

Partial Applications

Applying one argument to an unknown arity-3 function:
foo :: a -> b -> c -> d

a = foo x

Will give rise to
stg_PAP_info
42#2

42#

42#

42#1

arity

n_args

fun

args[0]

stg_PAP_info

nptrs = 0
type = PAP

ptrs = 0
foo

x

a

Well-Typed

Partial Applications

Applying one argument to an unknown arity-3 function:
foo :: a -> b -> c -> d

a = foo x

Will give rise to
stg_PAP_info
42#2

42#

42#

42#1

arity

n_args

fun

args[0]

stg_PAP_info

nptrs = 0
type = PAP

ptrs = 0
foo

x

a

Well-Typed

Closure Types: Haskell Constructs
Closure type Description
CONSTR A saturated data constructor application.

x = Just y
FUN A function.

f = \x -> ...
THUNK A thunk

x = fib 42
THUNK_SELECTOR A selector thunk

x = fst pair
AP A saturated function application.
PAP A partially-applied function application.

z = compare x
WEAK A Weak#
CONTINUATION A Continuation#

Well-Typed

Closure Types: Arrays and mutable variables

Closure type Description
MUT_VAR † A MutVar# (i.e. IORef or STRef).
MVAR † An MVar#.
TVAR An TVar#.
ARR_WORDS A ByteArray#.
MUT_ARR_PTRS † An MutableArray#
MUT_ARR_PTRS_FROZEN † An Array#
SMALL_MUT_ARR_PTRS † An MutableSmallArray#
SMALL_MUT_ARR_PTRS_FROZEN † An SmallArray#

† denotes that the type has _CLEAN and _DIRTY variants.

Well-Typed

Closure Types: Book-keeping

Closure type Description
AP_STACK A computation suspended due to thrown exception.
IND An indirection.
BCO A byte-code object
BLACKHOLE A thunk which is currently under evaluation.
BLOCKING_QUEUE Records that a thread is blocked on a blackhole.
TSO An thread state object.
STACK An thread stack chunk.
WHITEHOLE A general placeholder used for synchronization.

Well-Typed

Case study: Thunk allocation and entry

To see how these pieces fit together, consider the following program:
-- examples/thunk.hs

foo :: Int -> Solo Int
foo n =

let thnk = fib n
in Solo thnk

Let’s trace the execution of an entry into foo and then thnk. . .

Well-Typed

Case study: Thunk allocation and entry (Core)

-- ghc examples/thunk.hs -ddump-simpl

foo :: Int -> Solo Int
[...]
foo = \ (n_aCE :: Int) -> Solo (fib n_aCE)

Well-Typed

Background: Reading STG syntax
Core STG

function binding
let
 foo :: Int -> Int =
 \r [x] rhs
in ...

let
 foo :: Int -> Int
 foo = \x -> rhs
in ...

updateable thunk
let
 foo :: Int
 foo = bar 42
in ...

let
 foo :: Int =
 {bar} \u [] bar 42
in ...

update flag
r ≡ "reentrant"

arguments

free variable list

single-entry (non-updatable) thunk
let
 foo :: Int
 foo = bar 42
in ...

let
 foo :: Int =
 {bar} \s [] bar 42
in ...

u ≡ "updatable"

s ≡ "single-entry"

Well-Typed

Background: Reading STG syntax
Core STG

function binding
let
 foo :: Int -> Int =
 \r [x] rhs
in ...

let
 foo :: Int -> Int
 foo = \x -> rhs
in ...

updateable thunk
let
 foo :: Int
 foo = bar 42
in ...

let
 foo :: Int =
 {bar} \u [] bar 42
in ...

update flag
r ≡ "reentrant"

arguments

free variable list

single-entry (non-updatable) thunk
let
 foo :: Int
 foo = bar 42
in ...

let
 foo :: Int =
 {bar} \s [] bar 42
in ...

u ≡ "updatable"

s ≡ "single-entry"

Well-Typed

Background: Reading STG syntax
Core STG

function binding
let
 foo :: Int -> Int =
 \r [x] rhs
in ...

let
 foo :: Int -> Int
 foo = \x -> rhs
in ...

updateable thunk
let
 foo :: Int
 foo = bar 42
in ...

let
 foo :: Int =
 {bar} \u [] bar 42
in ...

update flag
r ≡ "reentrant"

arguments

free variable list

single-entry (non-updatable) thunk
let
 foo :: Int
 foo = bar 42
in ...

let
 foo :: Int =
 {bar} \s [] bar 42
in ...

u ≡ "updatable"

s ≡ "single-entry"

Well-Typed

Case study: Thunk allocation (STG)

-- ghc examples/thunk.hs -ddump-stg-final

Hi.foo :: GHC.Types.Int -> Solo GHC.Types.Int
[GblId, Arity=1, Str=<MP(ML)>, Cpr=1, Unf=OtherCon []] =

\r [n_s11D]
let {
sat_s11E [Occ=Once1] :: GHC.Types.Int
[LclId] =

\u [] Hi.fib n_s11D;
} in Solo [sat_s11E];

Well-Typed

Case study: Thunk allocation (Cmm)
// ghc examples/thunk.hs -ddump-opt-cmm

Hi.foo_entry() // [R2]
{

c12S:
// N.B. R2 is the first argument to `foo`
Hp = Hp + 40;

// Heap check:
if (Hp > HpLim) (likely: False) {

goto heap_chk_failed;
} else {

goto heap_chk_ok;
}

heap_chk_failed:
HpAlloc = 40;
R1 = Hi.foo_closure;
call (I64[BaseReg - 8])(R2, R1)

args: 8, res: 0, upd: 8;

heap_chk_ok:
I64[Hp - 32] = sat_s11E_info;
P64[Hp - 16] = R2;
I64[Hp - 8] = Solo_con_info;
P64[Hp] = Hp - 32;
R1 = Hp - 7; // due to pointer tagging
call (P64[Sp])(R1)

args: 8, res: 0, upd: 8;
}

-- ghc examples/thunk.hs -ddump-stg-final

Hi.foo :: GHC.Types.Int -> Solo GHC.Types.Int
[...] =
\r [n_s11D]

let {
sat_s11E [Occ=Once1] :: GHC.Types.Int
[LclId] =

\u [] Hi.fib n_s11D;
} in Solo [sat_s11E];

Hp−8

Hp

Hp−16

Hp−24

Hp−32

1Solo_con_info

sat_s11E_info

R1 = result

n

Well-Typed

Case study: Thunk entry

Recall our example program:
foo :: Int -> Solo Int
foo n =

let thnk = fib n
in Solo thnk

. . . where the STG was:
Hi.foo :: Int -> Solo Int =
\r [n_s11D]
let {
sat_s11E [Occ=Once1]
:: GHC.Types.Int =
\u [] Hi.fib n_s11D;

} in Solo [sat_s11E];

Well-Typed

Case study: Thunk entry (Cmm)
// ghc examples/thunk.hs -ddump-opt-cmm

sat_s11E_entry() { // [R1]
c12O:

// N.B. on entry R1 is the address of `thnk`

// Stack check:
if ((Sp + -16) < SpLim) (likely: False) {

goto stack_chk_failed;
} else {

goto stack_chk_ok;
}

stack_chk_failed:
call (I64[BaseReg - 16])(R1)

args: 8, res: 0, upd: 8;

stack_chk_ok:
// Push update frame
I64[Sp - 16] = stg_upd_frame_info;
P64[Sp - 8] = R1;
Sp = Sp - 16;

// Setup call to `fib`
R2 = P64[R1 + 16]; // === n
call Hi.fib_info(R2)

args: 24, res: 0, upd: 24;
}

Well-Typed

Case study: Thunk update

TSO_info
evaluating_tso

s11E_info

n

s11E s11E_info

nptrs = 0
type = THUNK

ptrs = 1

BLACKHOLE_info

nptrs = 0
type = BLACKHOLE

ptrs = 0

Well-Typed

Case study: Thunk update

BLACKHOLE_info

n

TSO_info
evaluating_tso

s11E s11E_info

nptrs = 0
type = THUNK

ptrs = 1

BLACKHOLE_info

nptrs = 0
type = BLACKHOLE

ptrs = 0

Well-Typed

Case study: Thunk update

BLACKHOLE_info

n

I#_info
result

TSO_info
evaluating_tso

s11E s11E_info

nptrs = 0
type = THUNK

ptrs = 1

BLACKHOLE_info

nptrs = 0
type = BLACKHOLE

ptrs = 0

Well-Typed

Case study: Thunk update

BLACKHOLE_info

n

I#_info
result

TSO_info
evaluating_tso

s11E s11E_info

nptrs = 0
type = THUNK

ptrs = 1

BLACKHOLE_info

nptrs = 0
type = BLACKHOLE

ptrs = 0

Well-Typed

The Storage Manager

Storage management

Requirements:
▶ Incremental address-space commit
▶ Allocation, freeing, and reuse
▶ Efficient membership query
▶ O(1) lookup of metadata by address
▶ NUMA-domain awareness

Well-Typed

Block allocator
GHC bases its storage manger on a block allocator [5]

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Block
descriptors

Megablock

Block

increasing address

Well-Typed

Block descriptor
// From rts/include/rts/storage/Block.h

typedef struct bdescr_ {
StgPtr start; // [READ ONLY] start addr of block
union {

StgPtr free; // First free byte of block
struct NonmovingSegmentInfo nonmoving_segment;

};
struct bdescr_ *link; // used for chaining blocks together
union {

struct bdescr_ *back; // sometimes used for doubly-linked lists
StgWord *bitmap; // bitmap for mark/compact GC
StgPtr scan; // scan pointer for copying GC

} u;
struct generation_ *gen; // generation
StgWord16 gen_no; // gen->no, cached
StgWord16 dest_no; // number of destination generation
StgWord16 node; // which NUMA node does this block live?
StgWord16 flags; // block flags, see below
StgWord32 blocks; // [READ ONLY] no. of blocks in a group

} bdescr; Well-Typed

Mutator Allocation

Each STG machine is allocated a nursery by the GC
(Storage.c:resetNurseries):
typedef struct nursery_ {

bdescr * blocks;
memcount n_blocks;

} nursery;

blocks is a chain of free blocks which the mutator will allocate into in
bump-pointer manner.
Exception: Arrays are allocated via Storage.c:allocate or
Storage.c:allocatePinned.

Well-Typed

Mutator Allocation: Heap Check

Each function which allocates is responsible for performing a heap
check:
Hp = Hp + bytes_needed;
if (Hp > HpLim) {

// jump to GC
} else {

// proceed...
}

Well-Typed

Mutator Allocation: Heap Check
If the heap check fails we end up in
stg_gc_noregs
(HeapStackCheck.cmm).

From the scheduler, control passes
to Schedule.c:scheduleDoGC
and finally GC.c:GarbageCollect.

yes

Hp > HpLim?

HpLim == 0?

yes, heap overflow

Return to
scheduler

Allocation
too large?

More
nursery
chunks?

Ctxt. switch
requested?

Setup new
nursery

no

Continue
execution

yes

no

no

yes

yes, we are being
preempted

no, stack overflow

Well-Typed

Threading and Concurrency

Threading

GHC/Haskell provides threads with an M : N threading model.
Supports “bound” threads (e.g. forkOS).

Two principle abstractions:
▶ Task: An OS thread used for Haskell execution.
▶ Capability: A Haskell execution context.

There are a fixed number of capabilities in a program; set by:
▶ passing +RTS -N<n> on the command-line, or
▶ calling Control.Concurrent.setNumCapabilities

Well-Typed

Threading

GHC/Haskell provides threads with an M : N threading model.
Supports “bound” threads (e.g. forkOS).
Two principle abstractions:
▶ Task: An OS thread used for Haskell execution.
▶ Capability: A Haskell execution context.

There are a fixed number of capabilities in a program; set by:
▶ passing +RTS -N<n> on the command-line, or
▶ calling Control.Concurrent.setNumCapabilities

Well-Typed

Threading

GHC/Haskell provides threads with an M : N threading model.
Supports “bound” threads (e.g. forkOS).
Two principle abstractions:
▶ Task: An OS thread used for Haskell execution.
▶ Capability: A Haskell execution context.

There are a fixed number of capabilities in a program; set by:
▶ passing +RTS -N<n> on the command-line, or
▶ calling Control.Concurrent.setNumCapabilities

Well-Typed

Capability: Basics
// From rts/Capability.h

struct Capability_ {
...
StgRegTable r; // STG machine registers

uint32_t no; // capability number.

// The NUMA node on which this capability resides.
uint32_t node;

// true if this Capability is currently running Haskell
bool in_haskell;
...

Well-Typed

Capability: Ownership
// From rts/Capability.h

struct Capability_ {
...

// The Task currently holding this Capability.
Task *running_task;

Mutex lock;
...

Each capability may be owned by a task, implying exclusive access to
most of its fields.
Capabilities are acquired and released with
void releaseCapability (Capability* cap);
void waitForCapability (Capability **cap, Task *task);

Well-Typed

Capability: The run queue

// From rts/Capability.h

struct Capability_ {
...

// The queue of Haskell threads waiting to run
// on the capability.
StgTSO *run_queue_hd;
StgTSO *run_queue_tl;
uint32_t n_run_queue;

...

Well-Typed

Capability: GC bits

// From rts/Capability.h

struct Capability_ {
...

// Various remembered sets for the GCs
bdescr **mut_lists, **saved_mut_lists;
UpdRemSet upd_rem_set;

...

Well-Typed

Capability: Allocation areas
// From rts/Capability.h

struct Capability_ {
...

// Array of current segments for the non-moving collector.
// Of length NONMOVING_ALLOCA_CNT.
struct NonmovingSegment **current_segments;

// block for allocating pinned objects into
bdescr *pinned_object_block;
// full pinned object blocks allocated since the last GC
bdescr *pinned_object_blocks;
// empty pinned object blocks, to be allocated into
bdescr *pinned_object_empty;

...

Well-Typed

Capability: Context switch flags
// From rts/Capability.h

struct Capability_ {
// Context switch flag. When non-zero, this means:
// stop running Haskell code, and switch threads.
int context_switch;

// Interrupt flag. Like the context_switch flag, this also
// indicates that we should stop running Haskell code
// but we do *not* switch threads.
//
// This is used to stop a Capability in order to do GC,
// for example.
int interrupt;

...

Well-Typed

Inter-capability communication: Messages

Capabilities at times need to notify their peers of events:
▶ MessageBlackhole: “I am blocking on a thunk you are currently

evaluating”
▶ MessageThrowTo: “I am throwing an asynchronous exception to

your thread t”
Messages are delivered by setting the recipient Capability’s inbox
field.

Well-Typed

Haskell Threads
Each Haskell thread is represented by a Thread State Object:
// from rts/include/rts/storage/TSO.h

typedef struct StgTSO_ {
StgHeader header;
StgTSO* _link; /* content-dependent list */
StgTSO* global_link; /* per-generation list of all threads */
StgStack* stackobj; /* the top of the thread's stack */
StgWord16 what_next; /* the thread's run-state */
StgWord16 why_blocked; /* What is the thread blocked on? */
StgTSOBlockInfo block_info;
StgWord32 flags;
StgThreadID id; /* numeric identifier */
StgWord32 saved_errno;
StgWord32 dirty; /* non-zero => dirty */
InCall* bound; /* is the thread bound to a task? */
Capability* cap; /* owning capability */
StgTRecHeader* trec; /* Active STM transaction */
StgArrBytes* label; /* Thread label */

/* List of threads blocked on this TSO waiting to throw exceptions. */
struct MessageThrowTo_ * blocked_exceptions;

/* Threads blocked on thunks that are under evaluation by this thread. */
struct StgBlockingQueue_ *bq;

StgInt64 alloc_limit; /* Allocation limiit in bytes */

/* Sum of the sizes of all stack chunks in words */
StgWord32 tot_stack_size;

} StgTSO;
Well-Typed

Scheduling and work-pushing

Thread scheduling is handled by Schedule.c:schedule. The
threaded RTS’s scheduler uses a work-pushing scheme to distribute
TSOs to idle capabilities:
▶ Every scheduler iteration checks whether it has “excess” threads
▶ If so: look for idle capabilities, move excess to their run queues
▶ Wake-up target capabilities

Well-Typed

Linker

Linker: What?

GHC’s RTS includes static runtime linker/loader implementations for:
▶ COFF (Windows)
▶ ELF (Linux, BSDs)
▶ MachO (Darwin)

Goal: Load object files (e.g. .o files) and static archives (e.g. .a files) for
execution.

Well-Typed

Linker: Why?

▶ Portability: Dynamic linking implementations tend to vary
drastically in what they support; on Windows it’s not supported at
all.

▶ Performance: Dynamic linking requires position-independent
code which can come at a performance penalty

▶ Functionality: Things like code unloading/reloading are near
impossible given the constraints of POSIX/Win32’s interfaces.

Well-Typed

Linker: Phases
The primary abstraction of the linker is ObjectCode, representing a
loaded object file.
Linking begins with a call to Linker.c:loadObj.
This proceeds in several phases:
1. Indexing

▶ Verify integrity of object (ocVerifyImage)
▶ enumerate defined symbols (ocGetNames)

2. Resolution:
▶ Map object contents into address space
▶ Resolve and perform relocations (ocResolve)

3. Initialization
▶ Run static initializers (ocRunInit)

After loading, symbols can be resolved to addresses with
Linker.c:lookupSymbol.
See Note [runtime-linker-phases].

Well-Typed

Linker: Unloading and GC

Objects can be unloaded using unloadObj.
When there are objects pending unload the GC will mark reachable
ObjectCodes.
After GC the linker will unload any unmarked objects.

Well-Typed

Linker: Mapping

Linking non-relocatable code is tricky due to, e.g., jump displacement
restrictions.
The m32 allocator is a special-purpose allocator specifically for
object-code mappings which manages low-memory for use by the
linker.
m32 also handles memory protection (e.g. WˆX)

Well-Typed

Bytecode Interpreter

Bytecode Interpreter

Compiling and loading object code is expensive.
For interactive usage we generally prefer bytecode.
▶ Closures compiled to bytecode take the form of bytecode

objects (BCOs)
▶ Stack machine, instruction stream of 16-bit words
▶ Bytecode documented in GHC.ByteCode.Instr
▶ Interpreter found in rts/Interpreter.c

Well-Typed

Working on the Runtime System

Code Structure

rts/linker The RTS linker; used for dynamic code loading in GHCi
rts/sm/{MBlock,BlockAlloc}.c The (mega-)block allocator
rts/sm/{GC,Evac,Scav}.c The copying garbage collector
rts/StgCRun.c Responsible for transitions between Haskell and C

execution.
rts/{js,posix,wasm,win32}/ Platform-dependent bits
rts/adjustor Adjustor thunk implementations (for foreign

exports)

Well-Typed

Header structure

There are two classes of RTS functions:
▶ private symbols, which are declared in rts/*.h and are not

exposed
▶ public symbols, which are declared in rts/include/...

To use the public interface one should #include <Rts.h>, not the
individual headers in rts/include.
The “stable” interface to the RTS appropriate for use by end-users is
defined in rts/include/RtsAPI.h.

Well-Typed

Validating RTS behavior

▶ Assertions:
▶ ASSERTs are only asserted in the DEBUG runtime
▶ CHECKs are always asserted

▶ valgrind
▶ Sometimes useful for diagnosing C-side leaks

▶ ThreadSanitizer
▶ Quite useful for catching data races; see Note

[ThreadSanitizer] in rts/includes/rts/TSANUtils.h.

Well-Typed

Observing RTS behavior

▶ debugBelch(): Simple printf debugging
▶ Eventlog (trace()): Sometimes more useful than debugBelch
▶ +RTS -D* (with -debug RTS): Useful tracing output
▶ strace
▶ gdb

▶ rr: Time travelling debugging
▶ ghc-utils/gdb1: Useful gdb extensions for inspecting RTS state
▶ Always build with +debug_info flavour transformer

1https://gitlab.haskell.org/bgamari/ghc-utils
Well-Typed

https://gitlab.haskell.org/bgamari/ghc-utils

Symbol names: Conventions
GHC uses a set of prefixes to identify compiler-generated symbols:

Prefix Meaning
$d Dictionary
$f Dictionary function
$w Worker function
$s Specialised function
$m Pattern synonym matcher
$dm Default method
$tc, $tr Typeable evidence
D: Dictionary data constructor

See Note [Making system names].

Well-Typed

Symbol names: Z-encoding

GHC-generated symbol names use a Z-encoding2 to escape
non-alphanumeric characters.

Character Z-encoding
. zi
+ zp
_ zu
h zh
$ zd

For instance,
base_GHCziBase_zpzp_closure

decodes to
base_GHC.Base_++_closure

2https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/symbol-names
Well-Typed

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/symbol-names

Recommended Reading

▶ “Mathematizing C++ Concurrency” [1]: Concurrency and memory
▶ “Runtime Support for Multicore Haskell” [6]
▶ “Haskell on a Shared-Memory Multiprocessor” [4]
▶ “Composable Memory Transactions” [3]: STM
▶ “A Concurrent Garbage Collector for the Glasgow Haskell

Compiler” [2]
▶ Pointer tagging

Well-Typed

Appendix

References
[1] Batty, M. et al. 2011. Mathematizing c++ concurrency3 . Proceedings of the 38th annual ACM SIGPLAN-SIGACT

symposium on principles of programming languages (New York, NY, USA, 2011), 55–66.
[2] Gamari, B. and Dietz, L. 2020. Alligator collector: A latency-optimized garbage collector for functional programming

languages4 . Proceedings of the 2020 ACM SIGPLAN international symposium on memory management (New
York, NY, USA, 2020), 87–99.

[3] Harris, T. et al. 2008. Composable memory transactions. Commun. ACM. 51, 8 (Aug. 2008), 91–100.
DOI:https://doi.org/10.1145/1378704.13787255 .

[4] Harris, T. et al. 2005. Haskell on a shared-memory multiprocessor6 . Proceedings of the 2005 ACM SIGPLAN work-
shop on haskell (New York, NY, USA, 2005), 49–61.

[5] Marlow, S. et al. 2008. Parallel generational-copying garbage collection with a block-structured heap7 . (2008), 11–20.
[6] Marlow, S. et al. 2009. Runtime support for multicore haskell8 . Proceedings of the 14th ACM SIGPLAN interna-

tional conference on functional programming (New York, NY, USA, 2009), 65–78.
[7] Peyton Jones, S.L. 1992. Implementing lazy functional languages on stock hardware: The spineless tagless g-machine.

Journal of Functional Programming. 2, 2 (1992), 127–202. DOI:https://doi.org/10.1017/S09567968000003199 .

3https://doi.org/10.1145/1926385.1926394
4https://doi.org/10.1145/3381898.3397214
5https://doi.org/10.1145/1378704.1378725
6https://doi.org/10.1145/1088348.1088354
7https://doi.org/%2010.1145/1375634.1375637%20
8https://doi.org/10.1145/1596550.1596563
9https://doi.org/10.1017/S0956796800000319

Well-Typed

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3381898.3397214
https://doi.org/10.1145/1378704.1378725
https://doi.org/10.1145/1088348.1088354
https://doi.org/%2010.1145/1375634.1375637%20
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1017/S0956796800000319

	The Big Picture
	The GHC/Haskell Execution Model
	The Stack
	The Heap
	The Storage Manager
	Threading and Concurrency
	Linker
	Bytecode Interpreter
	Working on the Runtime System
	Appendix

