GHC's Runtime System

Ben Gamari — ben@well-typed.com

= Well-Typed



Overview

P> Review of RTS's responsibilities

» Heap structure

v

Storage manager

» Block allocator
» Garbage collector

Concurrency
Bytecode interpreter

Linking

vV v . v vY

Debugging techniques

= Well-Typed



The Big Picture



GHC Overview

Legend

* Covered in
Workshop

Compilation
Pass

RTS
Subsystem

Compilation
Product

External tool

N———

STG-to-
JavaScript

j JS Source

Object Code

— STG-to-STG
Pipeline
HsGroup GhcPs
Stg
Renamer
STG-to-Cmm STG-to-
" " Byt d
JHsGroup GhcRn iccceoenp) A
Stg BCO
Typechecker
Cmm-to-Cmm RTS Bytecode
HsGroup GhcTc Pipeline Interpreter
Desugar [CrmDec1] \' ﬁ
ModGuts/Core

Cmm-to-Asm Cmm-to-LLVM

Core-to-Core .
Pipeline [Instruction] LLVM IR
ModGuts/Core LLVM pipeline
J Assembler <«— 1lc/ opt
Core-to-STG

\

Object Code

Cmm-to-C
jc source

cc

\

Object Code

= Well-Typed



The Runtime System

Mutator

Bytecode Interpreter

Primops

Eventlog | Linker

m32
alloc.

Scheduler

Nonmoving
GC

Copying
GC

Compacting
GC

Block allocator

Megablock Allocator

Operating System

» Provides a multitude of services:

VVVVYVYVYVYY

Allocation, garbage collection
Green threads, sparks
Various types and primops: StableName#, StaticPtr#, MVar#
WeakPtr# and finalization
Dynamic code loading
Bytecode interpreter
Exceptions & stack unwinding

STM, ...

= Well-Typed



The GHC/Haskell Execution Model



Abstract machine

A refinement of the STG Machine from [7].

( A ( A
General-

Purpose Special
Registers Registers Stack

R1
R2 [ cccs |

: (for profiler)

F1 [CurrentTSO‘
F2

D1
D2

Heap

= Well-Typed



The Stack



» Excess argument passing
P Excess result passing

» Continuation tracking

» Tracking thunk updates

» Exception handling

= Well-Typed



Abstract machine (stack representation)

A refinement of the STG Machine from [7].

( N\ N\ )
General-
Purpose Special Stack
Registers Registers Registers
R1 (stack limit)
R2 [ cccs | SpLim H1
: (for profiler) Sp —~J
(stack pointer)
F1 [CurrentTSO‘
F2
D1
D2
& J & J & J

(" otq STACK info )
stg_STACK _info

underflow_frame

7 etq STACK info )
stg_STACK_info

frame n

= Well-Typed



Example: Function calls and case analysis

foo = \a b ->
case faof x { _ >gxb}

= Well-Typed



Example: Function calls and case analysis

foo = \a b >
case faof x{_->gxb?3}

caller of foo

Will be lowered to

foo() { x_ret() {
StgPtr a=R1, b=R2; StgPtr x = R1;
StrPtr b = Sp(1)
// Push return frame Sp = Sp + 2;
Sp = Sp - 2; R1 = x; R2 = b;
Sp(0) = x_ret; call g;
Sp(1) = b; 3
// Enter scrutinee
R1 = a;
call f;
3

= Well-Typed



Example: Function calls and case analysis
Sp— x_ret

foo = \a b ->
case faof x{_->gxb} 7 [ U b

Will be lowered to

foo() { x_ret() {
StgPtr a=R1, b=R2; StgPtr x = R1;
StrPtr b = Sp(1)
// Push return frame Sp = Sp + 2;
Sp = Sp - 2; R1 = x; R2 = b;
Sp(0) = x_ret; call g;
Sp(1) = b; 3
// Enter scrutinee
R1 = a;
call f;
3

= Well-Typed



Example: Function calls and case analysis

foo = \a b >
case faof x{_->gxb?3}

caller of foo

Will be lowered to

foo() { x_ret() {
StgPtr a=R1, b=R2; StgPtr x = R1;
StrPtr b = Sp(1)
// Push return frame Sp = Sp + 2;
Sp = Sp - 2; R1 = x; R2 = b;
Sp(0) = x_ret; call g;
Sp(1) = b; 3
// Enter scrutinee
R1 = a;
call f;
3

= Well-Typed



The Heap



Abstract machine (heap representation)

A refinement of the STG Machine from [7].

r

N\

r

N\

r

General-
Purpose Special Stack Nursery
Registers Registers Registers
R1 (stack limit)
R2 | cccs | SpLim Hp
: (for profiler) Sp HpLim
(stack pointer)
F1 |CurrentTSO\
F2
D1
D2

J

= Well-Typed



Abstract machine (heap representation)

A refinement of the STG Machine from [7].

r

N\

r

N\

r

General-
Purpose Special Stack Nursery
Registers Registers Registers
R1 (stack limit)
R2 | cccs | SpLim Hp
: (for profiler) Sp HpLim
(stack pointer)
F1 |CurrentTSO\
F2
D1
D2

J

= Well-Typed



Abstract machine (heap representation)

A refinement of the STG Machine from [7].

r

N\

r

N\

r

General-
Purpose Special Stack Nursery
Registers Registers Registers
R1 (stack limit)
R2 | cccs | SpLim Hp
: (for profiler) Sp HpLim
(stack pointer)
F1 |CurrentTSO\
F2
D1
D2

J

= Well-Typed



Abstract machine (heap representation)

A refinement of the STG Machine from [7].

r

N\

r

N\

r

General-
Purpose Special Stack Nursery
Registers Registers Registers

R1 (stack limit)

R2 | cccs | SpLim Hp N

: (for profiler) Sp HpLim
(stack pointer)

F1 |CurrentTSO\

F2

D1

D2

J

= Well-Typed



Theme: Nearly everything is a heap object

>
| 2
>
>
>
>

Threads (StgTS0)
Stacks (StgStack)
Messages (Message)

Bytecode objects (StgBCO)

STM transactions (StgTRecHeader, StgTVarWatchQueue)

Compact regions (StgCompactNFData)

= Well-Typed



Heap Objects (closures)

From rts/include/rts/storage/Closures.h:

// Closure
typedef struct StgClosure_ {
StgHeader header;

struct StgClosure_ *payload[];
} StgClosure;

= Well-Typed



Heap Objects (closures)

From rts/include/rts/storage/Closures.h:

// Closure
typedef struct StgClosure_ {
StgHeader header;

struct StgClosure_ *payload[];
} StgClosure;

// Closure header
typedef struct {
const StgInfoTable*  info;
#if defined(PROFILING)
StgProfHeader prof;
#endif
} StgHeader;

= Well-Typed



Info Tables

The structure of a closure is described by its info table:

P closure type (e.g. constructor, Weak#, thunk, indirection)
P> payload layout

» function arity

P> entry code

» for thunks and functions: pointer to static reference table (SRT)
See definition of StgInfoTable in
rts/include/rts/storage/InfoTables.h.

= Well-Typed



Entry Code: Naive model

closure_info

closure_info type = ..
# nptrs = ...
n # ptrs = ..

code =C—

entry code

= Well-Typed



Entry Code: Tables-next-to-code

closure_info

closure_info type = ..
# nptrs = ...
n # ptrs =
entry code

= Well-Typed



Heap Objects: Some Examples

let con = I# 42#
thnk = foo con
pair = (con, thnk)
sel = fst pair
in ...
I# _info
con _/_’ —
t = CONSTR
1# _info ype
= #nptrs =1
42#
#ptrs =0

= Well-Typed



I# 42#
foo con

let con
thnk

pair = (con, thnk)

sel
in ...

fst pair

42 #

)

Heap Objects: Some Examples

con /
( I#_info

thnk_info

I# _info
type = CONSTR
#nptrs =1
#ptrs =0

thnk info
type = THUNK
# nptrs =0
#ptrs =1

= Well-Typed



Heap Objects: Some Examples

let con = I# 42#
thnk = foo con
pair = (con, thnk)
sel = fst pair

in ...

. tuple2_info
anr type = CONSTR
tuple2_info

= # nptrs =0
con #ptrs =2
| ~thnk >

= Well-Typed



Heap Objects: Some Examples

let con = I# 42#
thnk = foo con
pair = (con, thnk)
sel = fst pair
in ...
. tuple2_info
a . _— [type = CONSTR
tuple2_info
= # nptrs =0
con #ptrs =2
P— A >
i fst_info
s€ S = SEL_TNK
fst_info type =
= # nptrs =0
#ptrs =1
sel offset = 0

= Well-Typed



Partial Applications

Consider an undersaturated function application:

ap :: (@a->b >c) >a-> (b ->c)
ap f x = f x

This will compile to

{
StgPtr f = R2;
StgPtr x = R3;
R2 = x;
R1 = f;

call stg_ap_p_fast(R2, R1)
args: 8, res: 0, upd: 8;

= Well-Typed



Partial Applications

stg_ap_p_fast is an application function. These are generated for
various call patterns by utils/genapply.

This function will:

1. Inspect the closure type of the applied function
2. Determine whether the given number of arguments has

saturated the function
» If s0, call the function
P> If not, allocate a PAP closure

See _build/stagel/rts/build/cmm/AutoApply.cmm

= Well-Typed



Partial Applications

Applying one argument to an unknown arity-3 function:

foo :: a->b ->c¢c->d

a = foo x

= Well-Typed



Partial Applications

Applying one argument to an unknown arity-3 function:

foo ::a->b ->c-—>d

a = foo x

Will give rise to

a ; stg PAP_info
stg_PAP_info 9 A
. type = PAP
arity 2
#nptrs =0
n_args 1
- #ptrs =0
fun &———foo
args[0] oO———>x

= Well-Typed



Closure Types: Haskell Constructs

Closure type Description

CONSTR A saturated data constructor application.
x = Just y

FUN A function.
f=\x-> ...

THUNK A thunk
x = fib 42

THUNK_SELECTOR A selector thunk
x = fst pair

AP A saturated function application.

PAP A partially-applied function application.
z = compare X

WEAK A Weaki#

CONTINUATION AContinuation#

= Well-Typed



Closure Types: Arrays and mutable variables

Closure type Description

MUT_VAR t AMutVar# (i.e. IORef or STRef).
MVAR T An MVart,

TVAR An TVar#.

ARR_WORDS AByteArray#.

MUT_ARR_PTRS t An MutableArray#
MUT_ARR_PTRS_FROZEN t An Array#
SMALL_MUT_ARR_PTRS T An MutableSmallArray#
SMALL_MUT_ARR_PTRS_FROZEN t An SmallArray#

t denotes that the type has _CLEAN and _DIRTY variants.

= Well-Typed



Closure Types: Book-keeping

Closure type

Description

AP_STACK

IND

BCO

BLACKHOLE
BLOCKING_QUEUE
TSO

STACK
WHITEHOLE

A computation suspended due to thrown exception.
An indirection.

A byte-code object

A thunk which is currently under evaluation.
Records that a thread is blocked on a blackhole.

An thread state object.

An thread stack chunk.

A general placeholder used for synchronization.

= Well-Typed



Case study: Thunk allocation and entry

To see how these pieces fit together, consider the following program:
-- examples/thunk.hs

foo :: Int -> Solo Int

foo n =

let thnk = fib n
in Solo thnk

Let's trace the execution of an entry into foo and then thnk...

= Well-Typed



Case study: Thunk allocation and entry (Core)

-- ghc examples/thunk.hs -ddump-simpl
foo :: Int -> Solo Int

C...]
foo = \ (n_aCE :: Int) -> Solo (fib n_aCE)

= Well-Typed



Background: Reading STG syntax

Core STG
A —
function binding arguments
let let
foo :: Int -> Int foo ::/Int -> Int =
foo = \x -> rhs \r [x] rhs
in ... in .

e update flag
r = "reentrant"

= Well-Typed



Background: Reading STG syntax

Core STG
——— A —

updateable thunk

free variable list

let let

foo :: Int foo :: Int =

foo = bar 42 {bar} \u [] bar 42
in ... in ...

u = "updatable"

= Well-Typed



Background: Reading STG syntax

Core STG
——— A —

single-entry (non-updatable) thunk

let let

foo :: Int foo :: Int =

foo = bar 42 {bar} \s [] bar 42
in ... in ...

\s = "single-entry"

= Well-Typed



Case study: Thunk allocation (STG)

-- ghc examples/thunk.hs -ddump-stg-final

Hi.foo :: GHC.Types.Int -> Solo GHC.Types.Int
[GblId, Arity=1, Str=<MP(ML)>, Cpr=1, Unf=0therCon []] =
\r [n_s11D]
let {
sat_s11E [Occ=0Oncel] :: GHC.Types.Int
[LclId] =
\u [] Hi.fib n_s11D;
} in Solo [sat_s11E];

= Well-Typed



// ghc examples/thunk.hs -ddump-opt-cmm -- ghc examples/thunk.hs -ddump-stg-final

Hi.foo_entry() // [R2] Hi.foo :: GHC.Types.Int -> Solo GHC.Types.Int
[...1=
c12s: \r [n_s11D]
// N.B. R2 is the first argument to “foo" let {
Hp = Hp + 40; sat_s11E [Occ=Oncel] :: GHC.Types.Int
[Lelld] =

// Heap check: \u [] Hi.fib n_s11D;

if (Hp > HpLim) (likely: False) { } in Solo [sat_s11E];
goto heap_chk_failed;

} else {
goto heap_chk_ok;

}

heap_chk_failed:
HpAlloc = 40;
R1 = Hi.foo_closure;
call (I64[BaseReg - 81)(R2, R1)
args: 8, res: 0, upd: 8;

R1 = result
heap_chk_ok: Hp L
I64[Hp - 32] = sat_s11E_info; -
P64[Hp - 161 = R2; Hp-8 Solo_con_info
I64[Hp - 8] = Solo_con_info; Hp-16 o————n
P64[Hp] = Hp - 32; Hp—24
R1 = Hp - 7; // due to pointer Hp-32 sat_s1lE_info

call (P64[Sp])(R1)
args: 8, res: 0, upd: 8;

= Well-Typed



Case study: Thunk entry

Recall our example program: ... where the STG was:
foo :: Int -> Solo Int Hi.foo :: Int -> Solo Int =
foo n = \r [n_s11D]

let thnk = fib n let {

in Solo thnk sat_s11E [Occ=0Oncel]

:: GHC.Types.Int =
\u [] Hi.fib n_s11D;
} in Solo [sat_s11E];

= Well-Typed



y: Thunk ent

// ghc examples/thunk.hs -ddump-opt-cmm

sat_s11E_entry() { // [R1]
c120:

// N.B. on entry R1 is the ac “thnk *

// Stack check:

if ((Sp + -16) < SpLim) (likely: False) {
goto stack_chk_failed;

} else {
goto stack_chk_ok;

}

stack_chk_failed:
call (I64[BaseReg - 161)(R1)
args: 8, res: 0, upd: 8;

stack_chk_ok:
// Push update frame
164[Sp - 16] = stg_upd_frame_info;
P64[Sp - 8] = R1;
Sp = Sp - 16;

// Setup call to “fib"
R2 = P64[R1 + 161; // n
call Hi.fib_info(R2)

args: 24, res: 0, upd: 24;

= Well-Typed



Case study: Thunk update

s11E s11E info
s11E_info type = THUNK
#nptrs =0
n #ptrs =1
evaluating_tso BLACKHOLE info
TSO_info type = BLACKHOLE
oo #nptrs =0
#ptrs =0

= Well-Typed



Case study: Thunk update

s11E s11E info
BLACKHOLE_info type = THUNK
__—=0 #nptrs =0
n #ptrs =1
evaluating_tso BLACKHOLE info
TSO_info type = BLACKHOLE
oo #nptrs =0
#ptrs =0

= Well-Typed



Case study: Thunk update

s11E s11E info
BLACKHOLE_info type = THUNK
__—=0 #nptrs =0
n #ptrs =1
evaluating_tso BLACKHOLE info
TSO_info type = BLACKHOLE
oo #nptrs =0
result #pus =0
I#_info
o0 0

= Well-Typed



Case study: Thunk update

s11E s11E info
BLACKHOLE _info type = THUNK
) #nptrs =0
n #ptrs =1
evaluating_tso BLACKHOLE info
TSO_info type = BLACKHOLE
oo #nptrs =0
result #ptrs =0
I#_info
o0 0

= Well-Typed



The Storage Manager



Storage management

Requirements:
» Incremental address-space commit
» Allocation, freeing, and reuse
P Efficient membership query
» O(1) lookup of metadata by address

» NUMA-domain awareness

= Well-Typed



Block allocator

GHC bases its storage manger on a block allocator [5]

Block
descriptors

increasing address

n

1

4

2[2]3[4[5]6[7]8]
1

i

—

Megablock
Block

= Well-Typed



Block descriptor

// From rts/include/rts/storage/Block.h

typedef struct bdescr_ {
StgPtr start;
union {
StgPtr free;

/7

/7

[READ ONLY] start addr of block

First free byte of block

struct NonmovingSegmentInfo nonmoving_segment;

I
struct bdescr_ *1link;
union {
struct bdescr_ #*back;
StgWord *bitmap;
StgPtr scan;
oy
struct generation_ *gen;
StgWord16 gen_no;
StgWord16 dest_no;
StgWord16 node;
StgWord16 flags;
StgWord32 blocks;
} bdescr;

/7

//
/7
/7

/7
/7
//
/7
/7
//

used for chaining blocks together

sometimes used for doubly-linked lists
bitmap for mark/compact GC
scan pointer for copying GC

generation

gen->no, cached

number of destination generation
which NUMA node does this block live?
block flags, see below

[READ ONLY] no. of blocks in a group

= Well-Typed



Mutator Allocation

Each STG machine is allocated a nursery by the GC
(Storage.c:resetNurseries):

typedef struct nursery_ {

bdescr =* blocks;
memcount n_blocks;
} nursery;

blocks is a chain of free blocks which the mutator will allocate into in
bump-pointer manner.

Exception: Arrays are allocated via Storage.c:allocate or
Storage.c:allocatePinned

= Well-Typed



Mutator Allocation: Heap Check

Each function which allocates is responsible for performing a heap
check:

Hp = Hp + bytes_needed;
if (Hp > HpLim) {

// jump to GC
} else {

// proceed. ..

= Well-Typed



Mutator Allocation: Heap Check

If the heap check fails we end up in
stg_gc_noregs
(HeapStackCheck.cmm).

o, stack overflow

ves, heap overflow

Yes, we are being
preempted

ore
nursery
chunks?

yes
Setup new
nursery

Ctxt. switch
equested
o
Continue Return to
execution scheduler

From the scheduler, control passes
to Schedule. c:scheduleDoGC
and finally GC. c:GarbageCollect.

= Well-Typed



Threading and Concurrency



GHC/Haskell provides threads with an M : N threading model.

Supports “bound” threads (e.g. fork0S).

= Well-Typed



GHC/Haskell provides threads with an M : N threading model.
Supports “bound” threads (e.g. fork0S).
Two principle abstractions:

» Task: An OS thread used for Haskell execution.
P Capability: A Haskell execution context.

= Well-Typed



GHC/Haskell provides threads with an M : N threading model.
Supports “bound” threads (e.g. fork0S).
Two principle abstractions:

» Task: An OS thread used for Haskell execution.
P Capability: A Haskell execution context.

There are a fixed number of capabilities in a program; set by:

P passing +RTS -N<n>on the command-line, or
P calling Control.Concurrent.setNumCapabilities

= Well-Typed



Capability: Basics

// From rts/Capability.h

struct Capability_ {
éééRegTable r; // STG machine registers
uint32_t no; // capability number.

// The NUMA node on which this capability resides.
uint32_t node;

// true if this Capability is currently running Haskell
bool in_haskell;

= Well-Typed



Capability: Ownership

// From rts/Capability.h

struct Capability_ {

// The Task currently holding this Capability.
Task *running_task;

Mutex lock;

Each capability may be owned by a task, implying exclusive access to
most of its fields.

Capabilities are acquired and released with

void releaseCapability (Capability* cap);
void waitForCapability (Capability **cap, Task *task);
= Well-Typed



Capability: The run queue

// From rts/Capability.h

struct Capability_ {

// The queue of Haskell threads waiting to run
// on the capability.
StgTSO *run_queue_hd;
StgTSO *run_queue_t1;
uint32_t n_run_queue;

= Well-Typed



Capability: GC bits

// From rts/Capability.h

struct Capability_ {

// Various remembered sets for the GCs
bdescr **mut_lists, **saved_mut_lists;
UpdRemSet upd_rem_set;

= Well-Typed



Capability: Allocation areas

// From rts/Capability.h

struct Capability_ {

// Array of current segments for the non-moving collector.
// Of length NONMOVING_ALLOCA_CNT.
struct NonmovingSegment **current_segments;

// block for allocating pinned objects into

bdescr *pinned_object_block;

// full pinned object blocks allocated since the last GC
bdescr *pinned_object_blocks;

// empty pinned object blocks, to be allocated into
bdescr *pinned_object_empty;

= Well-Typed



Capability: Context switch flags

// From rts/Capability.h

struct Capability_ {
// Context switch flag. When non-zero, this means:
// stop running Haskell code, and switch threads.
int context_switch;

// Interrupt flag. Like the context_switch flag, this al:
// indicates that we should stop running Haskell code

// but we do *not* switch threads.

//

// This is used to stop a Capability in order to do GC,
// for example.

int interrupt;

= Well-Typed



Inter-capability communication: Messages

Capabilities at times need to notify their peers of events:

P> MessageBlackhole: “l am blocking on a thunk you are currently
evaluating”

P> MessageThrowTo: “l am throwing an asynchronous exception to
your thread t”

Messages are delivered by setting the recipient Capability’'s inbox
field.

= Well-Typed



Haskell Threads

Each Haskell thread is represented by a Thread State Object:

// from rts/include/rts/storage/TSO.h

typedef struct StgTSO_ {

StgHeader header;

StgTSO* _link; /* content-dependent list x/
StgTSO* global_link; /* per-gene ion list of all threads */
StgStack# stackobj; the thread's stack */
StgWord16 what_next; * i's run-state */
StgWord16 why_blocked; /* What is the thread blocked on? */
StgTSOBlockInfo block_info;

StgWord32 flags;

StgThreadID id; /* numeric identifier %/

StgWord32 saved_errno;

StgWord32 dirty; /* non-zero => dirty */

InCallx bound; /* is the thread bound to a task? */
Capability= cap; /* owning capability */
StgTRecHeader*  trec; /* Active STM transaction x/
StgArrBytes# label; /* Thread label */

/* List of threads blocked on this TSO waiting to throw exceptions. */

struct MessageThrowTo_ * blocked_exceptions;

/* Thr s blocked on thunks that are under evaluation by this thread. *x/
struct StgBlockingQueue_ *bq;

StgInt64 alloc_limit; /* Allocation limiit in bytes */

/* Sum of the sizes of all stack chunks in ds *x/
StgWord32 tot_stack_size;

} StgTso;

= Well-Typed



Scheduling and work-pushing

Thread scheduling is handled by Schedule. c:schedule. The
threaded RTS's scheduler uses a work-pushing scheme to distribute
TSOs to idle capabilities:

P Every scheduler iteration checks whether it has “excess” threads
» If so: look for idle capabilities, move excess to their run queues

> Wake-up target capabilities

= Well-Typed



Linker



Linker: What?

GHC's RTS includes static runtime linker/loader implementations for:

» COFF (Windows)
» ELF (Linux, BSDs)
» MachO (Darwin)

Goal: Load object files (e.g. .o files) and static archives (e.g. . a files) for
execution.

= Well-Typed



» Portability: Dynamic linking implementations tend to vary
drastically in what they support; on Windows it's not supported at
all.

» Performance: Dynamic linking requires position-independent
code which can come at a performance penalty

» Functionality: Things like code unloading/reloading are near
impossible given the constraints of POSIX/Win32's interfaces.

= Well-Typed



Linker: Phases

The primary abstraction of the linker is ObjectCode, representing a
loaded object file.

Linking begins with a call to Linker.c:1load0Obj.
This proceeds in several phases:

1. Indexing

> Verify integrity of object (ocVerifyImage)

» enumerate defined symbols (ocGetNames)
2. Resolution:

» Map object contents into address space

P Resolve and perform relocations (ocResolve)
3. Initialization

» Run static initializers (ocRunInit)

After loading, symbols can be resolved to addresses with
Linker.c:lookupSymbol.

See Note [runtime-linker-phases]. =WeII-Typed



Linker: Unloading and GC

Obijects can be unloaded using unloadObj.

When there are objects pending unload the GC will mark reachable
ObjectCodes.

After GC the linker will unload any unmarked objects.

= Well-Typed



Linker: Mapping

Linking non-relocatable code is tricky due to, e.g., jump displacement
restrictions.

The m32 allocator is a special-purpose allocator specifically for
object-code mappings which manages low-memory for use by the
linker.

m32 also handles memory protection (e.g. W"X)

= Well-Typed



Bytecode Interpreter



Bytecode Interpreter

Compiling and loading object code is expensive.
For interactive usage we generally prefer bytecode.

P Closures compiled to bytecode take the form of bytecode
objects (BCOs)

» Stack machine, instruction stream of 16-bit words

Bytecode documented in GHC.ByteCode. Instr

» Interpreter found in rts/Interpreter.c

v

= Well-Typed



Working on the Runtime System



Code Structure

rts/linker The RTS linker; used for dynamic code loading in GHCi
rts/sm/{MBlock,BlockAlloc}.c The (mega-)block allocator
rts/sm/{GC,Evac,Scav}.c The copying garbage collector

rts/StgCRun.c Responsible for transitions between Haskell and C
execution.

rts/{js,posix,wasm,win32}/ Platform-dependent bits

rts/adjustor Adjustor thunk implementations (for foreign
exports)

= Well-Typed



Header structure

There are two classes of RTS functions:

P private symbols, which are declared in rts/*.h and are not
exposed
» public symbols, which are declared in rts/include/. ..

To use the public interface one should #include <Rts.h>, notthe
individual headers in rts/include.

The “stable” interface to the RTS appropriate for use by end-users is
defined in rts/include/RtsAPI.h.

= Well-Typed



Validating RTS behavior

P> Assertions:
» ASSERTs are only asserted in the DEBUG runtime
» CHECKs are always asserted
» valgrind
» Sometimes useful for diagnosing C-side leaks
» ThreadSanitizer
» Quite useful for catching data races; see Note
[ThreadSanitizer]inrts/includes/rts/TSANUtils.h.

= Well-Typed



Observing RTS behavior

debugBelch(): Simple printf debugging
Eventlog (trace()): Sometimes more useful than debugBelch
+RTS -D* (with ~debug RTS): Useful tracing output
strace
gdb
» rr: Time travelling debugging
» ghc-utils/gdb': Useful gdb extensions for inspecting RTS state
P Always build with +debug_info flavour transformer

VvyVYyYvVyy

"https://gitlab.haskell.org/bgamari/ghc-utils

= Well-Typed


https://gitlab.haskell.org/bgamari/ghc-utils

Symbol names: Conventions

GHC uses a set of prefixes to identify compiler-generated symbols:

Prefix Meaning

$d Dictionary

$f Dictionary function

$w Worker function

$s Specialised function

$m Pattern synonym matcher
$dm Default method

$tc, $tr Typeable evidence

D: Dictionary data constructor

See Note [Making system names].

= Well-Typed



Symbol names: Z-encoding

GHC-generated symbol names use a Z-encoding? to escape
non-alphanumeric characters.

For instance,
base_GHCziBase_zpzp_closure

Character Z-encoding

decodes to
zi base_GHC.Base_++_closure
_ zu
h zh
$ zd

2https:/gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/symbol-names

= Well-Typed


https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/symbol-names

Recommended Reading

vVvVvyvVvyy

“Mathematizing C++ Concurrency” [1]: Concurrency and memory
“Runtime Support for Multicore Haskell” [6]

“Haskell on a Shared-Memory Multiprocessor” [4]

“Composable Memory Transactions” [3]: STM

“A Concurrent Garbage Collector for the Glasgow Haskell
Compiler” [2]

Pointer tagging

= Well-Typed



Appendix



References

1

[2]

3]

[41

[5]

[6]

71

Batty, M. et al. 2011. Mathematizing c++ concurrency? Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on principles of programming languages (New York, NY, USA, 2011), 55-66.

Gamari, B. and Dietz, L. 2020. Alligator collector: A latency-optimized garbage collector for functional programming
Ianguages‘\ Proceedings of the 2020 ACM SIGPLAN international symposium on memory management (New
York, NY, USA, 2020), 87-99.

Harris, T. et al. 2008. Composable memory transactions. Commun. ACM. 51, 8 (Aug. 2008), 91-100.
DOL:https://doi.org/10.1145/1378704.1 378725°.

Harris, T. et al. 2005. Haskell on a shared-memory multiprocessore. Proceedings of the 2005 ACM SIGPLAN work-
shop on haskell (New York, NY, USA, 2005), 49-61.

Marlow, S. et al. 2008. Parallel generational-copying garbage collection with a block-structured heap7. (2008), 11-20.

Marlow, S. et al. 2009. Runtime support for multicore haskell®. Proceedings of the 14th ACM SIGPLAN interna-
tional conference on functional programming (New York, NY, USA, 2009), 65-78.

Peyton Jones, S.L. 1992. Implementing lazy functional languages on stock hardware: The spineless tagless g-machine.
Journal of Functional Programming. 2, 2 (1992), 127-202. DOI:https://doiAorgH0.1017/509567968000003199

3https://doi.org/1 0.1145/1926385.1926394
“https://doi.org/10.1145/3381898.3397214
5https://doi.org/1 0.1145/1378704.1378725
6https://doi.org/1 0.1145/1088348.1088354
"https://doi.org/%2010.1145/1375634.1375637%20
8https://doi.org/1 0.1145/1596550.1596563
9https://doi.org/1 0.1017/50956796800000319

= Well-Typed


https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3381898.3397214
https://doi.org/10.1145/1378704.1378725
https://doi.org/10.1145/1088348.1088354
https://doi.org/%2010.1145/1375634.1375637%20
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1017/S0956796800000319

	The Big Picture
	The GHC/Haskell Execution Model
	The Stack
	The Heap
	The Storage Manager
	Threading and Concurrency
	Linker
	Bytecode Interpreter
	Working on the Runtime System
	Appendix

